<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Define and discuss nuclear decay.
  • State the conservation laws.
  • Explain parent and daughter nucleus.
  • Calculate the energy emitted during nuclear decay.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 5.B.8.1 The student is able to describe emission or absorption spectra associated with electronic or nuclear transitions as transitions between allowed energy states of the atom in terms of the principle of energy conservation, including characterization of the frequency of radiation emitted or absorbed. (S.P. 1.2, 7.2)
  • 5.C.1.1 The student is able to analyze electric charge conservation for nuclear and elementary particle reactions and make predictions related to such reactions based upon conservation of charge. (S.P. 6.4, 7.2)
  • 5.C.2.1 The student is able to predict electric charges on objects within a system by application of the principle of charge conservation within a system. (S.P. 6.4)
  • 5.G.1.1 The student is able to apply conservation of nucleon number and conservation of electric charge to make predictions about nuclear reactions and decays such as fission, fusion, alpha decay, beta decay, or gamma decay. (S.P. 6.4)

Nuclear decay    has provided an amazing window into the realm of the very small. Nuclear decay gave the first indication of the connection between mass and energy, and it revealed the existence of two of the four basic forces in nature. In this section, we explore the major modes of nuclear decay; and, like those who first explored them, we will discover evidence of previously unknown particles and conservation laws.

Some nuclides are stable, apparently living forever. Unstable nuclides decay (that is, they are radioactive), eventually producing a stable nuclide after many decays. We call the original nuclide the parent    and its decay products the daughters . Some radioactive nuclides decay in a single step to a stable nucleus. For example, 60 Co size 12{"" lSup { size 8{"60"} } "Co"} {} is unstable and decays directly to 60 Ni size 12{"" lSup { size 8{"60"} } "Ni"} {} , which is stable. Others, such as 238 U size 12{"" lSup { size 8{"238"} } U} {} , decay to another unstable nuclide, resulting in a decay series    in which each subsequent nuclide decays until a stable nuclide is finally produced. The decay series that starts from 238 U size 12{"" lSup { size 8{"238"} } U} {} is of particular interest, since it produces the radioactive isotopes 226 Ra size 12{"" lSup { size 8{"226"} } "Ra"} {} and 210 Po size 12{"" lSup { size 8{"210"} } "Po"} {} , which the Curies first discovered (see [link] ). Radon gas is also produced ( 222 Rn size 12{"" lSup { size 8{"222"} } "Rn"} {} in the series), an increasingly recognized naturally occurring hazard. Since radon is a noble gas, it emanates from materials, such as soil, containing even trace amounts of 238 U size 12{"" lSup { size 8{"238"} } U} {} and can be inhaled. The decay of radon and its daughters produces internal damage. The 238 U size 12{"" lSup { size 8{"238"} } U} {} decay series ends with 206 Pb size 12{"" lSup { size 8{"206"} } "Pb"} {} , a stable isotope of lead.

A graph is shown in which decay of alpha and beta is shown. Also half lives of each isotope are shown. Uranium decays in one mode but some isotopes decay by more than one mode. Finally a stable isotope of lead results.
The decay series produced by 238 U size 12{"" lSup { size 8{"238"} } U} {} , the most common uranium isotope. Nuclides are graphed in the same manner as in the chart of nuclides. The type of decay for each member of the series is shown, as well as the half-lives. Note that some nuclides decay by more than one mode. You can see why radium and polonium are found in uranium ore. A stable isotope of lead is the end product of the series.

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask