<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Understand the definition of force.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 3.A.2.1 The student is able to represent forces in diagrams or mathematically using appropriately labeled vectors with magnitude, direction, and units during the analysis of a situation. (S.P. 1.1)
  • 3.A.3.2 The student is able to challenge a claim that an object can exert a force on itself. (S.P. 6.1)
  • 3.A.3.3 The student is able to describe a force as an interaction between two objects and identify both objects for any force. (S.P. 1.4)
  • 3.B.2.1 The student is able to create and use free-body diagrams to analyze physical situations to solve problems with motion qualitatively and quantitatively. (S.P. 1.1, 1.4, 2.2)

Dynamics is the study of the forces that cause objects and systems to move. To understand this, we need a working definition of force. Our intuitive definition of force    —that is, a push or a pull—is a good place to start. We know that a push or pull has both magnitude and direction (therefore, it is a vector quantity) and can vary considerably in each regard. For example, a cannon exerts a strong force on a cannonball that is launched into the air. In contrast, Earth exerts only a tiny downward pull on a flea. Our everyday experiences also give us a good idea of how multiple forces add. If two people push in different directions on a third person, as illustrated in [link] , we might expect the total force to be in the direction shown. Since force is a vector, it adds just like other vectors, as illustrated in [link] (a) for two ice skaters. Forces, like other vectors, are represented by arrows and can be added using the familiar head-to-tail method or by trigonometric methods. These ideas were developed in Two-Dimensional Kinematics .

By definition, force is always the result of an interaction of two or more objects. No object possesses force on its own. For example, a cannon does not possess force, but it can exert force on a cannonball. Earth does not possess force on its own, but exerts force on a football or on any other massive object. The skaters in Figure 4.3 exert force on one another as they interact.

No object can exert force on itself. When you clap your hands, one hand exerts force on the other. When a train accelerates, it exerts force on the track and vice versa. A bowling ball is accelerated by the hand throwing it; once the hand is no longer in contact with the bowling ball, it is no longer accelerating the bowling ball or exerting force on it. The ball continues moving forward due to inertia.

(a) Overhead view of two ice skaters pushing on a third. One skater pushes with a force F two, represented by an arrow pointing up, and a second skater pushes with a force F one, represented by an arrow pointing from left to right. Vector F one and vector F two are along the arms of the two skaters acting on the third skater. A vector diagram is shown in the form of a right triangle in which the base is vector F one pointing east and perpendicular is shown by vector F two pointing north. The resultant vector is shown by the hypotenuse pointing northeast. (b) Free-body diagram showing only the forces acting on the skater.
Part (a) shows an overhead view of two ice skaters pushing on a third. Forces are vectors and add like other vectors, so the total force on the third skater is in the direction shown. In part (b), we see a free-body diagram representing the forces acting on the third skater.

[link] (b) is our first example of a free-body diagram    , which is a technique used to illustrate all the external forces acting on a body. The body is represented by a single isolated point (or free body), and only those forces acting on the body from the outside (external forces) are shown. (These forces are the only ones shown, because only external forces acting on the body affect its motion. We can ignore any internal forces within the body.) Free-body diagrams are very useful in analyzing forces acting on a system and are employed extensively in the study and application of Newton’s laws of motion.

Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask