<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Define and discuss fluorescence.
  • Define metastable.
  • Describe how laser emission is produced.
  • Explain population inversion.
  • Define and discuss holography.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 1.A.5.1 The student is able to model verbally or visually the properties of a system based on its substructure and to relate this to changes in the system properties over time as external variables are changed. (S.P. 1.1, 7.1)
  • 1.A.5.2 The student is able to construct representations of how the properties of a system are determined by the interactions of its constituent substructures. (S.P. 1.1, 1.4, 7.1)
  • 7.C.4.1 The student is able to construct or interpret representations of transitions between atomic energy states involving the emission and absorption of photons. (S.P. 1.1, 1.2)

Many properties of matter and phenomena in nature are directly related to atomic energy levels and their associated excitations and de-excitations. The color of a rose, the output of a laser, and the transparency of air are but a few examples. (See [link] .) While it may not appear that glow-in-the-dark pajamas and lasers have much in common, they are in fact different applications of similar atomic de-excitations.

The image shows several red and blue colored laser beams rays that look similar to searchlights.
Light from a laser is based on a particular type of atomic de-excitation. (credit: Jeff Keyzer)

The color of a material is due to the ability of its atoms to absorb certain wavelengths while reflecting or reemitting others. A simple red material, for example a tomato, absorbs all visible wavelengths except red. This is because the atoms of its hydrocarbon pigment (lycopene) have levels separated by a variety of energies corresponding to all visible photon energies except red. Air is another interesting example. It is transparent to visible light, because there are few energy levels that visible photons can excite in air molecules and atoms. Visible light, thus, cannot be absorbed. Furthermore, visible light is only weakly scattered by air, because visible wavelengths are so much greater than the sizes of the air molecules and atoms. Light must pass through kilometers of air to scatter enough to cause red sunsets and blue skies.

Real world connections: the tomato

Let us consider the properties of a tomato from two different perspectives. When we try to explain the color of a tomato, we must consider the tomato as a system with properties that depend on its internal structure and the interactions between various parts. The internal structure of the tomato (specifically, the behavior of its pigment molecules) is very important and must be understood. Unlike a hydrogen atom, the energy level structure of a pigment molecule in a tomato is much more complicated. There are a very large number of energy levels, and the energy differences between these levels correspond to many different parts/colors of the visible spectrum, except for red.

So the photons that can be absorbed by these pigment molecules include every energy (or wavelength) in the visible spectrum except energies (or wavelengths) in the red part of the spectrum. Because these molecules absorb most of the visible photons, but reflect red photons, the color of the tomato appears red to our eyes. Without understanding the internal structure of the tomato pigment “system,” we would have no way of explaining its color.

Now consider a tomato in free fall. It accelerates toward the Earth at a rate of 9.8 m/s 2 , and we can say this with confidence without knowing anything about the internal structure of the tomato. In this case, we refer to the tomato as an object rather than a system. We only need to know the macroscopic properties of the tomato (its mass) in order to understand the force acting on the tomato.

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask