<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Define and discuss fluorescence.
  • Define metastable.
  • Describe how laser emission is produced.
  • Explain population inversion.
  • Define and discuss holography.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 1.A.5.1 The student is able to model verbally or visually the properties of a system based on its substructure and to relate this to changes in the system properties over time as external variables are changed. (S.P. 1.1, 7.1)
  • 1.A.5.2 The student is able to construct representations of how the properties of a system are determined by the interactions of its constituent substructures. (S.P. 1.1, 1.4, 7.1)
  • 7.C.4.1 The student is able to construct or interpret representations of transitions between atomic energy states involving the emission and absorption of photons. (S.P. 1.1, 1.2)

Many properties of matter and phenomena in nature are directly related to atomic energy levels and their associated excitations and de-excitations. The color of a rose, the output of a laser, and the transparency of air are but a few examples. (See [link] .) While it may not appear that glow-in-the-dark pajamas and lasers have much in common, they are in fact different applications of similar atomic de-excitations.

The image shows several red and blue colored laser beams rays that look similar to searchlights.
Light from a laser is based on a particular type of atomic de-excitation. (credit: Jeff Keyzer)

The color of a material is due to the ability of its atoms to absorb certain wavelengths while reflecting or reemitting others. A simple red material, for example a tomato, absorbs all visible wavelengths except red. This is because the atoms of its hydrocarbon pigment (lycopene) have levels separated by a variety of energies corresponding to all visible photon energies except red. Air is another interesting example. It is transparent to visible light, because there are few energy levels that visible photons can excite in air molecules and atoms. Visible light, thus, cannot be absorbed. Furthermore, visible light is only weakly scattered by air, because visible wavelengths are so much greater than the sizes of the air molecules and atoms. Light must pass through kilometers of air to scatter enough to cause red sunsets and blue skies.

Real world connections: the tomato

Let us consider the properties of a tomato from two different perspectives. When we try to explain the color of a tomato, we must consider the tomato as a system with properties that depend on its internal structure and the interactions between various parts. The internal structure of the tomato (specifically, the behavior of its pigment molecules) is very important and must be understood. Unlike a hydrogen atom, the energy level structure of a pigment molecule in a tomato is much more complicated. There are a very large number of energy levels, and the energy differences between these levels correspond to many different parts/colors of the visible spectrum, except for red.

So the photons that can be absorbed by these pigment molecules include every energy (or wavelength) in the visible spectrum except energies (or wavelengths) in the red part of the spectrum. Because these molecules absorb most of the visible photons, but reflect red photons, the color of the tomato appears red to our eyes. Without understanding the internal structure of the tomato pigment “system,” we would have no way of explaining its color.

Now consider a tomato in free fall. It accelerates toward the Earth at a rate of 9.8 m/s 2 , and we can say this with confidence without knowing anything about the internal structure of the tomato. In this case, we refer to the tomato as an object rather than a system. We only need to know the macroscopic properties of the tomato (its mass) in order to understand the force acting on the tomato.

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask