<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Explain the law of the conservation of energy.
  • Describe some of the many forms of energy.
  • Define efficiency of an energy conversion process as the fraction left as useful energy or work, rather than being transformed, for example, into thermal energy.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 4.C.1.2 The student is able to predict changes in the total energy of a system due to changes in position and speed of objects or frictional interactions within the system. (S.P. 6.4)
  • 4.C.2.1 The student is able to make predictions about the changes in the mechanical energy of a system when a component of an external force acts parallel or antiparallel to the direction of the displacement of the center of mass. (S.P. 6.4)
  • 4.C.2.2 The student is able to apply the concepts of conservation of energy and the work-energy theorem to determine qualitatively and/or quantitatively that work done on a two-object system in linear motion will change the kinetic energy of the center of mass of the system, the potential energy of the systems, and/or the internal energy of the system. (S.P. 1.4, 2.2, 7.2)
  • 5.A.2.1 The student is able to define open and closed systems for everyday situations and apply conservation concepts for energy, charge, and linear momentum to those situations. (S.P. 6.4, 7.2)
  • 5.B.5.4 The student is able to make claims about the interaction between a system and its environment in which the environment exerts a force on the system, thus doing work on the system and changing the energy of the system (kinetic energy plus potential energy). (S.P. 6.4, 7.2)
  • 5.B.5.5 The student is able to predict and calculate the energy transfer to (i.e., the work done on) an object or system from information about a force exerted on the object or system through a distance. (S.P. 2.2, 6.4)

Law of conservation of energy

Energy, as we have noted, is conserved, making it one of the most important physical quantities in nature. The law of conservation of energy    can be stated as follows:

Total energy is constant in any process. It may change in form or be transferred from one system to another, but the total remains the same.

We have explored some forms of energy and some ways it can be transferred from one system to another. This exploration led to the definition of two major types of energy—mechanical energy KE + PE size 12{ left ("KE"+"PE" right )} {} and energy transferred via work done by nonconservative forces ( W nc ) size 12{ \( W rSub { size 8{"nc"} } \) } {} . But energy takes many other forms, manifesting itself in many different ways, and we need to be able to deal with all of these before we can write an equation for the above general statement of the conservation of energy.

Other forms of energy than mechanical energy

At this point, we deal with all other forms of energy by lumping them into a single group called other energy ( OE size 12{"OE"} {} ). Then we can state the conservation of energy in equation form as

KE i + PE i + W nc + OE i = KE f + PE f + OE f . size 12{"KE" rSub { size 8{i} } +"PE" rSub { size 8{i} } +W rSub { size 8{"nc"} } +"OE" rSub { size 8{i} } ="KE" rSub { size 8{f} } +"PE" rSub { size 8{f} } +"OE" rSub { size 8{f} } } {}

All types of energy and work can be included in this very general statement of conservation of energy. Kinetic energy is KE size 12{"KE"} {} , work done by a conservative force is represented by PE size 12{"PE"} {} , work done by nonconservative forces is W nc size 12{W rSub { size 8{"nc"} } } {} , and all other energies are included as OE size 12{"OE"} {} . This equation applies to all previous examples; in those situations OE size 12{"OE"} {} was constant, and so it subtracted out and was not directly considered.

Questions & Answers

find the equation of the tangent to the curve y=2x³-x²+3x+1 at the points x=1 and x=3
Esther Reply
derivative of logarithms function
Iqra Reply
how to solve this question
sidra
ex 2.1 question no 11
khansa
anyone can help me
khansa
question please
Rasul
ex 2.1 question no. 11
khansa
i cant type here
khansa
Find the derivative of g(x)=−3.
Abdullah Reply
any genius online ? I need help!!
Guzorochi Reply
how can i help you?
Pina
need to learn polynomial
Zakariya
i will teach...
nandu
I'm waiting
Zakariya
plz help me in question
Abish
How can I help you?
Tlou
evaluate the following computation (x³-8/x-2)
Murtala Reply
teach me how to solve the first law of calculus.
Uncle Reply
teach me also how to solve the first law of calculus
Bilson
what is differentiation
Ibrahim Reply
only god knows😂
abdulkadir
f(x) = x-2 g(x) = 3x + 5 fog(x)? f(x)/g(x)
Naufal Reply
fog(x)= f(g(x)) = x-2 = 3x+5-2 = 3x+3 f(x)/g(x)= x-2/3x+5
diron
pweding paturo nsa calculus?
jimmy
how to use fundamental theorem to solve exponential
JULIA Reply
find the bounded area of the parabola y^2=4x and y=16x
Omar Reply
what is absolute value means?
Geo Reply
Chicken nuggets
Hugh
🐔
MM
🐔🦃 nuggets
MM
(mathematics) For a complex number a+bi, the principal square root of the sum of the squares of its real and imaginary parts, √a2+b2 . Denoted by | |. The absolute value |x| of a real number x is √x2 , which is equal to x if x is non-negative, and −x if x is negative.
Ismael
find integration of loge x
Game Reply
find the volume of a solid about the y-axis, x=0, x=1, y=0, y=7+x^3
Godwin Reply
how does this work
Brad Reply
Can calculus give the answers as same as other methods give in basic classes while solving the numericals?
Cosmos Reply
log tan (x/4+x/2)
Rohan
please answer
Rohan
y=(x^2 + 3x).(eipix)
Claudia
is this a answer
Ismael
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask