<< Chapter < Page Chapter >> Page >

Making connections

Conservation of energy includes rotational motion, because rotational kinetic energy is another form of KE size 12{"KE"} {} . Uniform Circular Motion and Gravitation has a detailed treatment of conservation of energy.

How thick is the soup? or why don't all objects roll downhill at the same rate?

One of the quality controls in a tomato soup factory consists of rolling filled cans down a ramp. If they roll too fast, the soup is too thin. Why should cans of identical size and mass roll down an incline at different rates? And why should the thickest soup roll the slowest?

The easiest way to answer these questions is to consider energy. Suppose each can starts down the ramp from rest. Each can starting from rest means each starts with the same gravitational potential energy PE grav size 12{ ital "PE" rSub { size 8{ ital "grav"} } } {} , which is converted entirely to KE , provided each rolls without slipping. KE , however, can take the form of KE trans size 12{ ital "KE" rSub { size 8{ ital "trans"} } } {} or KE rot size 12{ ital "KE" rSub { size 8{ ital "rot"} } } {} , and total KE is the sum of the two. If a can rolls down a ramp, it puts part of its energy into rotation, leaving less for translation. Thus, the can goes slower than it would if it slid down. Furthermore, the thin soup does not rotate, whereas the thick soup does, because it sticks to the can. The thick soup thus puts more of the can's original gravitational potential energy into rotation than the thin soup, and the can rolls more slowly, as seen in [link] .

The figure shows a flat surface inclined at a height of h from the surface level, with three cans of soup of different densities numbered as one, two, and three rolling along it.
Three cans of soup with identical masses race down an incline. The first can has a low friction coating and does not roll but just slides down the incline. It wins because it converts its entire PE into translational KE. The second and third cans both roll down the incline without slipping. The second can contains thin soup and comes in second because part of its initial PE goes into rotating the can (but not the thin soup). The third can contains thick soup. It comes in third because the soup rotates along with the can, taking even more of the initial PE for rotational KE, leaving less for translational KE.

Assuming no losses due to friction, there is only one force doing work—gravity. Therefore the total work done is the change in kinetic energy. As the cans start moving, the potential energy is changing into kinetic energy. Conservation of energy gives

PE i = KE f . size 12{"PE" rSub { size 8{i} } ="KE" rSub { size 8{f} } } {}

More specifically,

PE grav = KE trans + KE rot size 12{"PE" rSub { size 8{"grav"} } ="KE" rSub { size 8{"trans"} } +"KE" rSub { size 8{"rot"} } } {}

or

mgh = 1 2 mv 2 + 1 2 2 . size 12{ ital "mgh"= { {1} over {2} } ital "mv" rSup { size 8{2} } + { {1} over {2} } Iω rSup { size 8{2} } } {}

So, the initial mgh size 12{ ital "mgh"} {} is divided between translational kinetic energy and rotational kinetic energy; and the greater I size 12{I} {} is, the less energy goes into translation. If the can slides down without friction, then ω = 0 size 12{ω=0} {} and all the energy goes into translation; thus, the can goes faster.

Take-home experiment

Locate several cans each containing different types of food. First, predict which can will win the race down an inclined plane and explain why. See if your prediction is correct. You could also do this experiment by collecting several empty cylindrical containers of the same size and filling them with different materials such as wet or dry sand.

Calculating the speed of a cylinder rolling down an incline

Calculate the final speed of a solid cylinder that rolls down a 2.00-m-high incline. The cylinder starts from rest, has a mass of 0.750 kg, and has a radius of 4.00 cm.

Strategy

We can solve for the final velocity using conservation of energy, but we must first express rotational quantities in terms of translational quantities to end up with v as the only unknown.

Solution

Conservation of energy for this situation is written as described above:

mgh = 1 2 mv 2 + 1 2 2 . size 12{ ital "mgh"= { {1} over {2} } ital "mv" rSup { size 8{2} } + { {1} over {2} } Iω rSup { size 8{2} } } {}

Before we can solve for v size 12{v} {} , we must get an expression for I size 12{I} {} from [link] . Because v size 12{v} {} and ω size 12{ω} {} are related (note here that the cylinder is rolling without slipping), we must also substitute the relationship ω = v / R size 12{ω=v/R} {} into the expression. These substitutions yield

mgh = 1 2 mv 2 + 1 2 1 2 mR 2 v 2 R 2 . size 12{ ital "mgh"= { {1} over {2} } ital "mv" rSup { size 8{2} } + { {1} over {2} } left ( { {1} over {2} } ital "mR" rSup { size 8{2} } right ) left ( { {v rSup { size 8{2} } } over {R rSup { size 8{2} } } } right )} {}

Interestingly, the cylinder's radius R and mass m cancel, yielding

gh = 1 2 v 2 + 1 4 v 2 = 3 4 v 2 . size 12{ ital "gh"= { {1} over {2} } v rSup { size 8{2} } + { {1} over {4} } v rSup { size 8{2} } = { {3} over {4} } v rSup { size 8{2} } } {}

Solving algebraically, the equation for the final velocity v size 12{v} {} gives

v = 4 gh 3 1 / 2 . size 12{v= left ( { {4 ital "gh"} over {3} } right ) rSup { size 8{1/2} } } {}

Substituting known values into the resulting expression yields

v = 4 9.80 m/s 2 2.00 m 3 1 / 2 = 5.11 m/s . size 12{v= left [ { {4 left (9 "." "80"" m/s" rSup { size 8{2} } right ) left (2 "." "00"" m" right )} over {3} } right ] rSup { size 8{1/2} } =5 "." "11"" m/s"} {}

Discussion

Because m size 12{m} {} and R size 12{R} {} cancel, the result v = 4 3 gh 1 / 2 size 12{v= left ( { {4} over {3} } ital "gh" right ) rSup { size 8{1/2} } } {} is valid for any solid cylinder, implying that all solid cylinders will roll down an incline at the same rate independent of their masses and sizes. (Rolling cylinders down inclines is what Galileo actually did to show that objects fall at the same rate independent of mass.) Note that if the cylinder slid without friction down the incline without rolling, then the entire gravitational potential energy would go into translational kinetic energy. Thus, 1 2 mv 2 = mgh size 12{ \( 1/2 \) ital "mv" rSup { size 8{2} } `= ital "mgh"} {} and v = ( 2 gh ) 1 / 2 size 12{v= \( 2 ital "gh" \) rSup { size 8{1/2} } } {} , which is 22% greater than ( 4 gh / 3 ) 1 / 2 size 12{ \( 4 ital "gh"/3 \) rSup { size 8{1/2} } } {} . That is, the cylinder would go faster at the bottom.

Got questions? Get instant answers now!

Questions & Answers

it is the relatively stable flow of income
Chidubem Reply
what is circular flow of income
Divine Reply
branches of macroeconomics
SHEDRACK Reply
what is Flexible exchang rate?
poudel Reply
is gdp a reliable measurement of wealth
Atega Reply
introduction to econometrics
Husseini Reply
Hi
mostafa
hi
LEMLEM
hello
Sammol
hi
Mahesh
bi
Ruqayat
hi
Ruqayat
Hi fellas
Nyawa
hey
Sammol
hi
God
hello
Jahara
Good morning
Jorge
hi
abubakar
hi
Nmesoma
hi
Mahesh
Hi
Tom
Why is unemployment rate never zero at full employment?
Priyanka Reply
bcoz of existence of frictional unemployment in our economy.
Umashankar
what is flexible exchang rate?
poudel
due to existence of the pple with disabilities
Abdulraufu
the demand of a good rises, causing the demand for another good to fall
Rushawn Reply
is it possible to leave every good at the same level
Joseph
I don't think so. because check it, if the demand for chicken increases, people will no longer consume fish like they used to causing a fall in the demand for fish
Anuolu
is not really possible to let the value of a goods to be same at the same time.....
Salome
Suppose the inflation rate is 6%, does it mean that all the goods you purchase will cost 6% more than previous year? Provide with reasoning.
Geetha Reply
Not necessarily. To measure the inflation rate economists normally use an averaged price index of a basket of certain goods. So if you purchase goods included in the basket, you will notice that you pay 6% more, otherwise not necessarily.
Waeth
discus major problems of macroeconomics
Alii Reply
what is the problem of macroeconomics
Yoal
Economic growth Stable prices and low unemployment
Ephraim
explain inflationcause and itis degre
Miresa Reply
what is inflation
Getu
increase in general price levels
WEETO
Good day How do I calculate this question: C= 100+5yd G= 2000 T= 2000 I(planned)=200. Suppose the actual output is 3000. What is the level of planned expenditures at this level of output?
Chisomo Reply
how to calculate actual output?
Chisomo
how to calculate the equilibrium income
Beshir
Criteria for determining money supply
Thapase Reply
who we can define macroeconomics in one line
Muhammad
Aggregate demand
Mohammed
C=k100 +9y and i=k50.calculate the equilibrium level of output
Mercy Reply
Hi
Isiaka
Hi
Geli
hy
Man
👋
Bahunda
hy how are you?
Man
ys
Amisha
how are you guys
Sekou
f9 guys
Amisha
how are you guys
Sekou
ys am also fine
Amisha
fine and you guys
Geli
from Nepal
Amisha
nawalparasi district from belatari
Amisha
nd u
Amisha
I am Camara from Guinea west Africa... happy to meet you guys here
Sekou
ma management ho
Amisha
ahile becheclor ho
Amisha
hjr ktm bta ho ani k kaam grnu hunxa tw
Amisha
belatari
Amisha
1st year ho
Amisha
nd u
Amisha
ahh
Amisha
kaha biratnagar
Amisha
ys
Amisha
kina k vo
Amisha
money as unit of account means what?
Kalombe
A unit of account is something that can be used to value goods and services and make calculations
Jim
all of you please speak in English I can't understand you're language
Muhammad
I want to know how can we define macroeconomics in one line
Muhammad
it must be .9 or 0.9 no Mpc is greater than 1 Y=100+.9Y+50 Y-.9Y=150 0.1Y/0.1=150/0.1 Y=1500
Kalombe
Mercy is it clear?😋
Kalombe
hi can someone help me on this question If a negative shocks shifts the IS curve to the left, what type of policy do you suggest so as to stabilize the level of output? discuss your answer using appropriate graph.
Galge Reply
if interest rate is increased this will will reduce the level of income shifting the curve to the left ◀️
Kalombe
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask