<< Chapter < Page Chapter >> Page >

Making connections

Conservation of energy includes rotational motion, because rotational kinetic energy is another form of KE size 12{"KE"} {} . Uniform Circular Motion and Gravitation has a detailed treatment of conservation of energy.

How thick is the soup? or why don't all objects roll downhill at the same rate?

One of the quality controls in a tomato soup factory consists of rolling filled cans down a ramp. If they roll too fast, the soup is too thin. Why should cans of identical size and mass roll down an incline at different rates? And why should the thickest soup roll the slowest?

The easiest way to answer these questions is to consider energy. Suppose each can starts down the ramp from rest. Each can starting from rest means each starts with the same gravitational potential energy PE grav size 12{ ital "PE" rSub { size 8{ ital "grav"} } } {} , which is converted entirely to KE , provided each rolls without slipping. KE , however, can take the form of KE trans size 12{ ital "KE" rSub { size 8{ ital "trans"} } } {} or KE rot size 12{ ital "KE" rSub { size 8{ ital "rot"} } } {} , and total KE is the sum of the two. If a can rolls down a ramp, it puts part of its energy into rotation, leaving less for translation. Thus, the can goes slower than it would if it slid down. Furthermore, the thin soup does not rotate, whereas the thick soup does, because it sticks to the can. The thick soup thus puts more of the can's original gravitational potential energy into rotation than the thin soup, and the can rolls more slowly, as seen in [link] .

The figure shows a flat surface inclined at a height of h from the surface level, with three cans of soup of different densities numbered as one, two, and three rolling along it.
Three cans of soup with identical masses race down an incline. The first can has a low friction coating and does not roll but just slides down the incline. It wins because it converts its entire PE into translational KE. The second and third cans both roll down the incline without slipping. The second can contains thin soup and comes in second because part of its initial PE goes into rotating the can (but not the thin soup). The third can contains thick soup. It comes in third because the soup rotates along with the can, taking even more of the initial PE for rotational KE, leaving less for translational KE.

Assuming no losses due to friction, there is only one force doing work—gravity. Therefore the total work done is the change in kinetic energy. As the cans start moving, the potential energy is changing into kinetic energy. Conservation of energy gives

PE i = KE f . size 12{"PE" rSub { size 8{i} } ="KE" rSub { size 8{f} } } {}

More specifically,

PE grav = KE trans + KE rot size 12{"PE" rSub { size 8{"grav"} } ="KE" rSub { size 8{"trans"} } +"KE" rSub { size 8{"rot"} } } {}

or

mgh = 1 2 mv 2 + 1 2 2 . size 12{ ital "mgh"= { {1} over {2} } ital "mv" rSup { size 8{2} } + { {1} over {2} } Iω rSup { size 8{2} } } {}

So, the initial mgh size 12{ ital "mgh"} {} is divided between translational kinetic energy and rotational kinetic energy; and the greater I size 12{I} {} is, the less energy goes into translation. If the can slides down without friction, then ω = 0 size 12{ω=0} {} and all the energy goes into translation; thus, the can goes faster.

Take-home experiment

Locate several cans each containing different types of food. First, predict which can will win the race down an inclined plane and explain why. See if your prediction is correct. You could also do this experiment by collecting several empty cylindrical containers of the same size and filling them with different materials such as wet or dry sand.

Calculating the speed of a cylinder rolling down an incline

Calculate the final speed of a solid cylinder that rolls down a 2.00-m-high incline. The cylinder starts from rest, has a mass of 0.750 kg, and has a radius of 4.00 cm.

Strategy

We can solve for the final velocity using conservation of energy, but we must first express rotational quantities in terms of translational quantities to end up with v as the only unknown.

Solution

Conservation of energy for this situation is written as described above:

mgh = 1 2 mv 2 + 1 2 2 . size 12{ ital "mgh"= { {1} over {2} } ital "mv" rSup { size 8{2} } + { {1} over {2} } Iω rSup { size 8{2} } } {}

Before we can solve for v size 12{v} {} , we must get an expression for I size 12{I} {} from [link] . Because v size 12{v} {} and ω size 12{ω} {} are related (note here that the cylinder is rolling without slipping), we must also substitute the relationship ω = v / R size 12{ω=v/R} {} into the expression. These substitutions yield

mgh = 1 2 mv 2 + 1 2 1 2 mR 2 v 2 R 2 . size 12{ ital "mgh"= { {1} over {2} } ital "mv" rSup { size 8{2} } + { {1} over {2} } left ( { {1} over {2} } ital "mR" rSup { size 8{2} } right ) left ( { {v rSup { size 8{2} } } over {R rSup { size 8{2} } } } right )} {}

Interestingly, the cylinder's radius R and mass m cancel, yielding

gh = 1 2 v 2 + 1 4 v 2 = 3 4 v 2 . size 12{ ital "gh"= { {1} over {2} } v rSup { size 8{2} } + { {1} over {4} } v rSup { size 8{2} } = { {3} over {4} } v rSup { size 8{2} } } {}

Solving algebraically, the equation for the final velocity v size 12{v} {} gives

v = 4 gh 3 1 / 2 . size 12{v= left ( { {4 ital "gh"} over {3} } right ) rSup { size 8{1/2} } } {}

Substituting known values into the resulting expression yields

v = 4 9.80 m/s 2 2.00 m 3 1 / 2 = 5.11 m/s . size 12{v= left [ { {4 left (9 "." "80"" m/s" rSup { size 8{2} } right ) left (2 "." "00"" m" right )} over {3} } right ] rSup { size 8{1/2} } =5 "." "11"" m/s"} {}

Discussion

Because m size 12{m} {} and R size 12{R} {} cancel, the result v = 4 3 gh 1 / 2 size 12{v= left ( { {4} over {3} } ital "gh" right ) rSup { size 8{1/2} } } {} is valid for any solid cylinder, implying that all solid cylinders will roll down an incline at the same rate independent of their masses and sizes. (Rolling cylinders down inclines is what Galileo actually did to show that objects fall at the same rate independent of mass.) Note that if the cylinder slid without friction down the incline without rolling, then the entire gravitational potential energy would go into translational kinetic energy. Thus, 1 2 mv 2 = mgh size 12{ \( 1/2 \) ital "mv" rSup { size 8{2} } `= ital "mgh"} {} and v = ( 2 gh ) 1 / 2 size 12{v= \( 2 ital "gh" \) rSup { size 8{1/2} } } {} , which is 22% greater than ( 4 gh / 3 ) 1 / 2 size 12{ \( 4 ital "gh"/3 \) rSup { size 8{1/2} } } {} . That is, the cylinder would go faster at the bottom.

Got questions? Get instant answers now!

Questions & Answers

summarize halerambos & holbon
David Reply
the Three stages of Auguste Comte
Clementina Reply
what are agents of socialization
Antonio Reply
sociology of education
Nuhu Reply
definition of sociology of education
Nuhu
what is culture
Abdulrahim Reply
shared beliefs, values, and practices
AI-Robot
What are the two type of scientific method
ogunniran Reply
I'm willing to join you
Aceng Reply
what are the scientific method of sociology
Man
what is socialization
ogunniran Reply
the process wherein people come to understand societal norms and expectations, to accept society's beliefs, and to be aware of societal values
AI-Robot
scientific method in doing research
ogunniran
defimition of sickness in afica
Anita
Cosmology
ogunniran
Hmmm
ogunniran
list and explain the terms that found in society
REMMY Reply
list and explain the terms that found in society
Mukhtar
what are the agents of socialization
Antonio
Family Peer group Institution
Abdulwajud
I mean the definition
Antonio
ways of perceived deviance indifferent society
Naomi Reply
reasons of joining groups
SAM
to bring development to the nation at large
Hyellafiya
entails of consultative and consensus building from others
Gadama
World first Sociologist?
Abu
What is evolutionary model
Muhammad Reply
Evolution models refer to mathematical and computational representations of the processes involved in biological evolution. These models aim to simulate and understand how species change over time through mechanisms such as natural selection, genetic drift, and mutation. Evolutionary models can be u
faruk
what are the modern trends in religious behaviours
Selekeye Reply
what are social norms
Daniel Reply
shared standards of acceptable behavior by the group or appropriate behavior in a particular institution or those behaviors that are acceptable in a society
Lucius
that is how i understood it
Lucius
examples of societal norms
Diamond
Discuss the characteristics of the research located within positivist and the interpretivist paradigm
Tariro Reply
what is Industrialisation
Selekeye Reply
industrialization
Angelo
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask