<< Chapter < Page Chapter >> Page >

All known leptons are listed in the table given above. There are only six leptons (and their antiparticles), and they seem to be fundamental in that they have no apparent underlying structure. Leptons have no discernible size other than their wavelength, so that we know they are pointlike down to about 10 18 m size 12{"10" rSup { size 8{ - "18"} } m} {} . The leptons fall into three families, implying three conservation laws for three quantum numbers. One of these was known from β size 12{β} {} decay, where the existence of the electron's neutrino implied that a new quantum number, called the electron family number     L e size 12{L rSub { size 8{e} } } {} is conserved. Thus, in β size 12{β} {} decay, an antielectron's neutrino v - e size 12{ { bar {v}} rSub { size 8{e} } } {} must be created with L e = 1 size 12{L rSub { size 8{e} } = - 1} {} when an electron with L e =+ 1 size 12{L rSub { size 8{e} } "=+"1} {} is created, so that the total remains 0 as it was before decay.

Once the muon was discovered in cosmic rays, its decay mode was found to be

μ e + v - e + v μ , size 12{μ rSup { size 8{ - {}} } rightarrow e rSup { size 8{ - {}} } + { bar {v}} rSub { size 8{e} } +v rSub { size 8{μ} } ","} {}

which implied another “family” and associated conservation principle. The particle v μ size 12{L rSub { size 8{μ} } } {} is a muon's neutrino, and it is created to conserve muon family number     L μ size 12{L rSub { size 8{μ} } } {} . So muons are leptons with a family of their own, and conservation of total L μ size 12{L rSub { size 8{μ} } } {} also seems to be obeyed in many experiments.

More recently, a third lepton family was discovered when τ size 12{τ} {} particles were created and observed to decay in a manner similar to muons. One principal decay mode is

τ μ + v - μ + v τ . size 12{τ rSup { size 8{ - {}} } rightarrow μ rSup { size 8{ - {}} } + { bar {v}} rSub { size 8{u} } +v rSub { size 8{τ} } "."} {}

Conservation of total L τ size 12{L rSub { size 8{μ} } } {} seems to be another law obeyed in many experiments. In fact, particle experiments have found that lepton family number is not universally conserved, due to neutrino “oscillations,” or transformations of neutrinos from one family type to another.

Mesons and baryons

Now, note that the hadrons in the table given above are divided into two subgroups, called mesons (originally for medium mass) and baryons (the name originally meaning large mass). The division between mesons and baryons is actually based on their observed decay modes and is not strictly associated with their masses. Mesons are hadrons that can decay to leptons and leave no hadrons, which implies that mesons are not conserved in number. Baryons are hadrons that always decay to another baryon. A new physical quantity called baryon number     B size 12{B} {} seems to always be conserved in nature and is listed for the various particles in the table given above. Mesons and leptons have B = 0 size 12{B=0} {} so that they can decay to other particles with B = 0 size 12{B=0} {} . But baryons have B =+ 1 size 12{B"=+"1} {} if they are matter, and B = 1 size 12{B= - 1} {} if they are antimatter. The conservation of total baryon number    is a more general rule than first noted in nuclear physics, where it was observed that the total number of nucleons was always conserved in nuclear reactions and decays. That rule in nuclear physics is just one consequence of the conservation of the total baryon number.

Forces, reactions, and reaction rates

The forces that act between particles regulate how they interact with other particles. For example, pions feel the strong force and do not penetrate as far in matter as do muons, which do not feel the strong force. (This was the way those who discovered the muon knew it could not be the particle that carries the strong force—its penetration or range was too great for it to be feeling the strong force.) Similarly, reactions that create other particles, like cosmic rays interacting with nuclei in the atmosphere, have greater probability if they are caused by the strong force than if they are caused by the weak force. Such knowledge has been useful to physicists while analyzing the particles produced by various accelerators.

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask