<< Chapter < Page Chapter >> Page >
A hopping kangaroo is shown landing on the ground in one photograph and in the air just after taking another jump in the second photograph.
The work done by the ground upon the kangaroo reduces its kinetic energy to zero as it lands. However, by applying the force of the ground on the hind legs over a longer distance, the impact on the bones is reduced. (credit: Chris Samuel, Flickr)

Finding the speed of a roller coaster from its height

(a) What is the final speed of the roller coaster shown in [link] if it starts from rest at the top of the 20.0 m hill and work done by frictional forces is negligible? (b) What is its final speed (again assuming negligible friction) if its initial speed is 5.00 m/s?

A roller coaster track is shown with a car about to go downhill. The initial height of the roller coaster car on the track is twenty-five meters from the lowest part of the track and its speed v sub zero is equal to zero. The roller coaster’s height from the level part of the track is twenty meters. The finish point of the car is on the level part of the track and the speed at that point is unknown.
The speed of a roller coaster increases as gravity pulls it downhill and is greatest at its lowest point. Viewed in terms of energy, the roller-coaster-Earth system’s gravitational potential energy is converted to kinetic energy. If work done by friction is negligible, all Δ PE g size 12{Δ"PE" rSub { size 8{g} } } {} is converted to KE size 12{"KE"} {} .

Strategy

The roller coaster loses potential energy as it goes downhill. We neglect friction, so that the remaining force exerted by the track is the normal force, which is perpendicular to the direction of motion and does no work. The net work on the roller coaster is then done by gravity alone. The loss of gravitational potential energy from moving downward through a distance h size 12{h} {} equals the gain in kinetic energy. This can be written in equation form as Δ PE g = Δ KE size 12{ - Δ"PE" rSub { size 8{g} } =Δ"KE"} {} . Using the equations for PE g size 12{"PE" rSub { size 8{g} } } {} and KE size 12{"KE"} {} , we can solve for the final speed v size 12{v} {} , which is the desired quantity.

Solution for (a)

Here the initial kinetic energy is zero, so that ΔKE = 1 2 mv 2 . The equation for change in potential energy states that ΔPE g = mgh . Since h is negative in this case, we will rewrite this as ΔPE g = mg h to show the minus sign clearly. Thus,

Δ PE g = Δ KE size 12{ - Δ"PE" rSub { size 8{g} } =Δ"KE"} {}

becomes

mg h = 1 2 mv 2 . size 12{ ital "mg" lline h rline = { {1} over {2} } ital "mv" rSup { size 8{2} } "." } {}

Solving for v size 12{v} {} , we find that mass cancels and that

v = 2 g h . size 12{v= sqrt {2g lline h rline } } {}

Substituting known values,

v = 2 9 . 80 m /s 2 20.0 m = 19 .8 m/s. alignl { stack { size 12{v= sqrt {2 left (9 "." "80"" m/s" rSup { size 8{2} } right ) left ("20" "." 0" m" right )} } {} # " "=" 19" "." "8 m/s" "." {}} } {}

Solution for (b)

Again ΔPE g = ΔKE size 12{ - Δ"PE" rSub { size 8{g} } =Δ"KE"} {} . In this case there is initial kinetic energy, so ΔKE = 1 2 m v 2 1 2 m v 0 2 size 12{Δ"KE"= { {1} over {2} } ital "mv" rSup { size 8{2} } - { {1} over {2} } ital "mv" rSub { size 8{0} rSup { size 8{2} } } } {} . Thus,

mg h = 1 2 mv 2 1 2 m v 0 2 . size 12{ ital "mg" lline h rline = { {1} over {2} } ital "mv" rSup { size 8{2} } - { {1} over {2} } ital "mv" rSub { size 8{0} rSup { size 8{2} } } "." } {}

Rearranging gives

1 2 mv 2 = mg h + 1 2 m v 0 2 . size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } = ital "mg" lline h rline + { {1} over {2} } ital "mv" rSub { size 8{0} rSup { size 8{2} } } "." } {}

This means that the final kinetic energy is the sum of the initial kinetic energy and the gravitational potential energy. Mass again cancels, and

v = 2 g h + v 0 2 . size 12{v= sqrt {2g lline h rline +v rSub { size 8{0} rSup { size 8{2} } } } } {}

This equation is very similar to the kinematics equation v = v 0 2 + 2 ad size 12{v= sqrt {v rSub { size 8{0} } rSup { size 8{2} } +2 ital "ad"} } {} , but it is more general—the kinematics equation is valid only for constant acceleration, whereas our equation above is valid for any path regardless of whether the object moves with a constant acceleration. Now, substituting known values gives

v = 2 ( 9 . 80 m/s 2 ) ( 20 .0 m ) + ( 5 .00 m/s ) 2 = 20.4 m/s. alignl { stack { size 12{v= sqrt {2 \( 9 "." "80"" m/s" rSup { size 8{2} } \) \( "20" "." 0" m" \) + \( 5 "." "00"" m/s" \) rSup { size 8{2} } } } {} #" "=" 20" "." "4 m/s" "." {} } } {}

Discussion and Implications

First, note that mass cancels. This is quite consistent with observations made in Falling Objects that all objects fall at the same rate if friction is negligible. Second, only the speed of the roller coaster is considered; there is no information about its direction at any point. This reveals another general truth. When friction is negligible, the speed of a falling body depends only on its initial speed and height, and not on its mass or the path taken. For example, the roller coaster will have the same final speed whether it falls 20.0 m straight down or takes a more complicated path like the one in the figure. Third, and perhaps unexpectedly, the final speed in part (b) is greater than in part (a), but by far less than 5.00 m/s. Finally, note that speed can be found at any height along the way by simply using the appropriate value of h size 12{h} {} at the point of interest.

Questions & Answers

how did you get 1640
Noor Reply
If auger is pair are the roots of equation x2+5x-3=0
Peter Reply
Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.
MATTHEW Reply
420
Sharon
from theory: distance [miles] = speed [mph] × time [hours] info #1 speed_Dennis × 1.5 = speed_Wayne × 2 => speed_Wayne = 0.75 × speed_Dennis (i) info #2 speed_Dennis = speed_Wayne + 7 [mph] (ii) use (i) in (ii) => [...] speed_Dennis = 28 mph speed_Wayne = 21 mph
George
Let W be Wayne's speed in miles per hour and D be Dennis's speed in miles per hour. We know that W + 7 = D and W * 2 = D * 1.5. Substituting the first equation into the second: W * 2 = (W + 7) * 1.5 W * 2 = W * 1.5 + 7 * 1.5 0.5 * W = 7 * 1.5 W = 7 * 3 or 21 W is 21 D = W + 7 D = 21 + 7 D = 28
Salma
Devon is 32 32​​ years older than his son, Milan. The sum of both their ages is 54 54​. Using the variables d d​ and m m​ to represent the ages of Devon and Milan, respectively, write a system of equations to describe this situation. Enter the equations below, separated by a comma.
Aaron Reply
find product (-6m+6) ( 3m²+4m-3)
SIMRAN Reply
-42m²+60m-18
Salma
what is the solution
bill
how did you arrive at this answer?
bill
-24m+3+3mÁ^2
Susan
i really want to learn
Amira
I only got 42 the rest i don't know how to solve it. Please i need help from anyone to help me improve my solving mathematics please
Amira
Hw did u arrive to this answer.
Aphelele
hi
Bajemah
-6m(3mA²+4m-3)+6(3mA²+4m-3) =-18m²A²-24m²+18m+18mA²+24m-18 Rearrange like items -18m²A²-24m²+42m+18A²-18
Salma
complete the table of valuesfor each given equatio then graph. 1.x+2y=3
Jovelyn Reply
x=3-2y
Salma
y=x+3/2
Salma
Hi
Enock
given that (7x-5):(2+4x)=8:7find the value of x
Nandala
3x-12y=18
Kelvin
please why isn't that the 0is in ten thousand place
Grace Reply
please why is it that the 0is in the place of ten thousand
Grace
Send the example to me here and let me see
Stephen
A meditation garden is in the shape of a right triangle, with one leg 7 feet. The length of the hypotenuse is one more than the length of one of the other legs. Find the lengths of the hypotenuse and the other leg
Marry Reply
how far
Abubakar
cool u
Enock
state in which quadrant or on which axis each of the following angles given measure. in standard position would lie 89°
Abegail Reply
hello
BenJay
hi
Method
I am eliacin, I need your help in maths
Rood
how can I help
Sir
hmm can we speak here?
Amoon
however, may I ask you some questions about Algarba?
Amoon
hi
Enock
what the last part of the problem mean?
Roger
The Jones family took a 15 mile canoe ride down the Indian River in three hours. After lunch, the return trip back up the river took five hours. Find the rate, in mph, of the canoe in still water and the rate of the current.
cameron Reply
Shakir works at a computer store. His weekly pay will be either a fixed amount, $925, or $500 plus 12% of his total sales. How much should his total sales be for his variable pay option to exceed the fixed amount of $925.
mahnoor Reply
I'm guessing, but it's somewhere around $4335.00 I think
Lewis
12% of sales will need to exceed 925 - 500, or 425 to exceed fixed amount option. What amount of sales does that equal? 425 ÷ (12÷100) = 3541.67. So the answer is sales greater than 3541.67. Check: Sales = 3542 Commission 12%=425.04 Pay = 500 + 425.04 = 925.04. 925.04 > 925.00
Munster
difference between rational and irrational numbers
Arundhati Reply
When traveling to Great Britain, Bethany exchanged $602 US dollars into £515 British pounds. How many pounds did she receive for each US dollar?
Jakoiya Reply
how to reduced echelon form
Solomon Reply
Jazmine trained for 3 hours on Saturday. She ran 8 miles and then biked 24 miles. Her biking speed is 4 mph faster than her running speed. What is her running speed?
Zack Reply
d=r×t the equation would be 8/r+24/r+4=3 worked out
Sheirtina
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask