<< Chapter < Page Chapter >> Page >
Emission spectrum of oxygen is shown as a band containing all colors with some distinct colors as discrete bold lines.
Emission spectrum of oxygen. When an electrical discharge is passed through a substance, its atoms and molecules absorb energy, which is reemitted as EM radiation. The discrete nature of these emissions implies that the energy states of the atoms and molecules are quantized. Such atomic spectra were used as analytical tools for many decades before it was understood why they are quantized. (credit: Teravolt, Wikimedia Commons)

It was a major puzzle that atomic spectra are quantized. Some of the best minds of 19th-century science failed to explain why this might be. Not until the second decade of the 20th century did an answer based on quantum mechanics begin to emerge. Again a macroscopic or classical body of gas was involved in the studies, but the effect, as we shall see, is due to individual atoms and molecules.

Phet explorations: models of the hydrogen atom

How did scientists figure out the structure of atoms without looking at them? Try out different models by shooting light at the atom. Check how the prediction of the model matches the experimental results.

Models of the Hydrogen Atom

Test prep for ap courses

The visible spectrum of sunlight shows a range of colors from red to violet. This spectrum has numerous dark lines spread throughout it. Noting that the surface of the Sun is much cooler than the interior, so that the surface is comparable to a cool gas through which light passes, which of the following statements correctly explains the dark lines?

  1. The cooler, denser surface material scatters certain wavelengths of light, forming dark lines.
  2. The atoms at the surface absorb certain wavelengths of light, causing the dark lines at those wavelengths.
  3. The atoms in the Sun’s interior emit light of specific wavelength, so that parts of the spectrum are dark.
  4. The atoms at the surface are excited by the high interior temperatures, so that the dark lines are merely wavelengths at which those atoms don’t emit energy.

(b)

Got questions? Get instant answers now!

A log in a fireplace burns for nearly an hour, at which point it consists mostly of small, hot embers. These embers glow a bright orange and whitish-yellow color. Describe the characteristics of the energy of this system, both in terms of energy transfer and the quantum behavior of blackbodies.

Got questions? Get instant answers now!

Section summary

  • The first indication that energy is sometimes quantized came from blackbody radiation, which is the emission of EM radiation by an object with an emissivity of 1.
  • Planck recognized that the energy levels of the emitting atoms and molecules were quantized, with only the allowed values of E = n + 1 2 hf , size 12{E= left (n+ { { size 8{1} } over { size 8{2} } } right ) ital "hf"} {} where n size 12{n} {} is any non-negative integer (0, 1, 2, 3, …).
  • h size 12{h} {} is Planck’s constant, whose value is h = 6 . 626 × 10 –34 J s. size 12{h = 6 "." "626" times " 10" rSup { size 8{"–34"} } " J " cdot " s"} {}
  • Thus, the oscillatory absorption and emission energies of atoms and molecules in a blackbody could increase or decrease only in steps of size Δ E = hf size 12{ΔE = ital "hf"} {} where f size 12{f} {} is the frequency of the oscillatory nature of the absorption and emission of EM radiation.
  • Another indication of energy levels being quantized in atoms and molecules comes from the lines in atomic spectra, which are the EM emissions of individual atoms and molecules.

Conceptual questions

Give an example of a physical entity that is quantized. State specifically what the entity is and what the limits are on its values.

Got questions? Get instant answers now!

Give an example of a physical entity that is not quantized, in that it is continuous and may have a continuous range of values.

Got questions? Get instant answers now!

What aspect of the blackbody spectrum forced Planck to propose quantization of energy levels in its atoms and molecules?

Got questions? Get instant answers now!

If Planck’s constant were large, say 10 34 size 12{"10" rSup { size 8{"34"} } } {} times greater than it is, we would observe macroscopic entities to be quantized. Describe the motions of a child’s swing under such circumstances.

Got questions? Get instant answers now!

Why don’t we notice quantization in everyday events?

Got questions? Get instant answers now!

Problems&Exercises

A LiBr molecule oscillates with a frequency of 1 . 7 × 10 13 Hz. size 12{1 "." 7 times "10" rSup { size 8{"13"} } " Hz"} {} (a) What is the difference in energy in eV between allowed oscillator states? (b) What is the approximate value of n size 12{n} {} for a state having an energy of 1.0 eV?

(a) 0.070 eV

(b) 14

Got questions? Get instant answers now!

The difference in energy between allowed oscillator states in HBr molecules is 0.330 eV. What is the oscillation frequency of this molecule?

Got questions? Get instant answers now!

A physicist is watching a 15-kg orangutan at a zoo swing lazily in a tire at the end of a rope. He (the physicist) notices that each oscillation takes 3.00 s and hypothesizes that the energy is quantized. (a) What is the difference in energy in joules between allowed oscillator states? (b) What is the value of n size 12{n} {} for a state where the energy is 5.00 J? (c) Can the quantization be observed?

(a) 2 . 21 × 10 34 J size 12{2 "." "21" times "10" rSup { size 8{"34"} } " J"} {}

(b) 2 . 26 × 10 34 size 12{2 "." "26" times "10" rSup { size 8{"34"} } } {}

(c) No

Got questions? Get instant answers now!

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask