<< Chapter < Page Chapter >> Page >

Now, we solve one of the rotational kinematics equations for αθ size 12{ ital "αθ"} {} . We start with the equation

ω 2 = ω 0 2 + 2 αθ . size 12{ω rSup { size 8{2} } =ω rSub { size 8{0} rSup { size 8{2} } } +2 ital "αθ"} {}

Next, we solve for αθ size 12{ ital "αθ"} {} :

αθ = ω 2 ω 0 2 2 . size 12{ ital "αθ"= { {ω rSup { size 8{2} } - ω rSub { size 8{0} rSup { size 8{2} } } } over {2} } } {}

Substituting this into the equation for net W size 12{W} {} and gathering terms yields

net W = 1 2 2 1 2 I ω 0 2 . size 12{"net "W= { {1} over {2} } Iω rSup { size 8{2} } - { {1} over {2} } Iω rSub { size 8{0} rSup { size 8{2} } } } {}

This equation is the work-energy theorem    for rotational motion only. As you may recall, net work changes the kinetic energy of a system. Through an analogy with translational motion, we define the term 1 2 2 size 12{ left ( { {1} over {2} } right )Iω rSup { size 8{2} } } {} to be rotational kinetic energy     KE rot size 12{ ital "KE" rSub { size 8{ ital "rot"} } } {} for an object with a moment of inertia I size 12{I} {} and an angular velocity ω size 12{ω} {} :

KE rot = 1 2 2 . size 12{"KE" rSub { size 8{"rot"} } = { {1} over {2} } Iω rSup { size 8{2} } } {}

The expression for rotational kinetic energy is exactly analogous to translational kinetic energy, with I size 12{I} {} being analogous to m size 12{m} {} and ω size 12{ω} {} to v size 12{v} {} . Rotational kinetic energy has important effects. Flywheels, for example, can be used to store large amounts of rotational kinetic energy in a vehicle, as seen in [link] .

The figure shows a bus carrying a large flywheel on its board in which rotational kinetic energy is stored.
Experimental vehicles, such as this bus, have been constructed in which rotational kinetic energy is stored in a large flywheel. When the bus goes down a hill, its transmission converts its gravitational potential energy into KE rot size 12{ ital "KE" rSub { size 8{ ital "rot"} } } {} . It can also convert translational kinetic energy, when the bus stops, into KE rot size 12{ ital "KE" rSub { size 8{ ital "rot"} } } {} . The flywheel's energy can then be used to accelerate, to go up another hill, or to keep the bus from going against friction.

Calculating the work and energy for spinning a grindstone

Consider a person who spins a large grindstone by placing her hand on its edge and exerting a force through part of a revolution as shown in [link] . In this example, we verify that the work done by the torque she exerts equals the change in rotational energy. (a) How much work is done if she exerts a force of 200 N through a rotation of 1.00 rad ( 57.3º ) size 12{1 "." "00"`"rad" \( "57" "." 3 \) rSup { size 8{ circ } } } {} ? The force is kept perpendicular to the grindstone's 0.320-m radius at the point of application, and the effects of friction are negligible. (b) What is the final angular velocity if the grindstone has a mass of 85.0 kg? (c) What is the final rotational kinetic energy? (It should equal the work.)

Strategy

To find the work, we can use the equation net W = net τ θ size 12{"net "W= left ("net "τ right )θ} {} . We have enough information to calculate the torque and are given the rotation angle. In the second part, we can find the final angular velocity using one of the kinematic relationships. In the last part, we can calculate the rotational kinetic energy from its expression in KE rot = 1 2 2 size 12{"KE" rSub { size 8{"rot"} } = { {1} over {2} } Iω rSup { size 8{2} } } {} .

Solution for (a)

The net work is expressed in the equation

net W = net τ θ , size 12{"net "W= left ("net "τ right )θ} {}

where net τ size 12{τ} {} is the applied force multiplied by the radius ( rF ) size 12{ \( ital "rF" \) } {} because there is no retarding friction, and the force is perpendicular to r size 12{r} {} . The angle θ size 12{θ} {} is given. Substituting the given values in the equation above yields

net W = rF θ = 0.320 m 200 N 1.00 rad = 64.0 N m.

Noting that 1 N · m = 1 J ,

net W = 64.0 J . size 12{"net "W="64" "." 0" J"} {}
The figure shows a large grindstone of radius r which is being given a spin by applying a force F in a counterclockwise direction, as indicated by the arrows.
A large grindstone is given a spin by a person grasping its outer edge.

Solution for (b)

To find ω size 12{ω} {} from the given information requires more than one step. We start with the kinematic relationship in the equation

ω 2 = ω 0 2 + 2 αθ . size 12{ω rSup { size 8{2} } =ω rSub { size 8{0} rSup { size 8{2} } } +2 ital "αθ"} {}

Note that ω 0 = 0 size 12{ω rSub { size 8{0} } =0} {} because we start from rest. Taking the square root of the resulting equation gives

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask