<< Chapter < Page Chapter >> Page >
A person is observing a moving ship from the shore. Another person is on top of ship's mast. The person in the ship drops binoculars and sees it dropping straight. The person on the shore sees the binoculars taking a curved trajectory.
Classical relativity. The same motion as viewed by two different observers. An observer on the moving ship sees the binoculars dropped from the top of its mast fall straight down. An observer on shore sees the binoculars take the curved path, moving forward with the ship. Both observers see the binoculars strike the deck at the base of the mast. The initial horizontal velocity is different relative to the two observers. (The ship is shown moving rather fast to emphasize the effect.)

Calculating relative velocity: an airline passenger drops a coin

An airline passenger drops a coin while the plane is moving at 260 m/s. What is the velocity of the coin when it strikes the floor 1.50 m below its point of release: (a) Measured relative to the plane? (b) Measured relative to the Earth?

A person standing on ground is observing an airplane. Inside the airplane a woman is sitting on seat. The airplane is moving in the right direction. The woman drops the coin which is vertically downwards for her but the person on ground sees the coin moving horizontally towards right.
The motion of a coin dropped inside an airplane as viewed by two different observers. (a) An observer in the plane sees the coin fall straight down. (b) An observer on the ground sees the coin move almost horizontally.

Strategy

Both problems can be solved with the techniques for falling objects and projectiles. In part (a), the initial velocity of the coin is zero relative to the plane, so the motion is that of a falling object (one-dimensional). In part (b), the initial velocity is 260 m/s horizontal relative to the Earth and gravity is vertical, so this motion is a projectile motion. In both parts, it is best to use a coordinate system with vertical and horizontal axes.

Solution for (a)

Using the given information, we note that the initial velocity and position are zero, and the final position is 1.50 m. The final velocity can be found using the equation:

v y 2 = v 0 y 2 2 g ( y y 0 ) . size 12{v rSub { size 8{y} rSup { size 8{2} } } =v rSub { size 8{0y} rSup { size 8{2} } } - 2g \( y - y rSub { size 8{0} } \) "."} {}

Substituting known values into the equation, we get

v y 2 = 0 2 2 ( 9 . 80 m/s 2 ) ( 1 . 50 m 0 m ) = 29 . 4 m 2 /s 2 size 12{v rSub { size 8{y} rSup { size 8{2} } } =0 rSup { size 8{2} } - 2 \( 9 "." "80"" m/s" rSup { size 8{2} } \) \( - 1 "." "50"" m" - 0" m" \) ="29" "." 4" m" rSup { size 8{2} } "/s" rSup { size 8{2} } } {}

yielding

v y = 5 . 42 m/s. size 12{v rSub { size 8{y} } = - 5 "." "42"" m/s."} {}

We know that the square root of 29.4 has two roots: 5.42 and -5.42. We choose the negative root because we know that the velocity is directed downwards, and we have defined the positive direction to be upwards. There is no initial horizontal velocity relative to the plane and no horizontal acceleration, and so the motion is straight down relative to the plane.

Solution for (b)

Because the initial vertical velocity is zero relative to the ground and vertical motion is independent of horizontal motion, the final vertical velocity for the coin relative to the ground is v y = 5.42 m/s , the same as found in part (a). In contrast to part (a), there now is a horizontal component of the velocity. However, since there is no horizontal acceleration, the initial and final horizontal velocities are the same and v x = 260 m/s size 12{"v subx =260 m/s"} {} . The x - and y -components of velocity can be combined to find the magnitude of the final velocity:

v = v x 2 + v y 2 . size 12{v= sqrt {v rSub { size 8{x} rSup { size 8{2} } } +v rSub { size 8{y} rSup { size 8{2} } } } "."} {}

Thus,

v = ( 260 m/s ) 2 + ( 5 . 42 m/s ) 2 size 12{v= sqrt { \( "260"" m/s" \) rSup { size 8{2} } + \( - 5 "." "42"" m/s" \) rSup { size 8{2} } } } {}

yielding

v = 260 . 06 m/s. size 12{v="260" "." "06"" m/s."} {}

The direction is given by:

θ = tan 1 ( v y / v x ) = tan 1 ( 5 . 42 / 260 ) size 12{θ="tan" rSup { size 8{ - 1} } \( v rSub { size 8{y} } /v rSub { size 8{x} } \) ="tan" rSup { size 8{ - 1} } \( - 5 "." "42"/"260" \) } {}

so that

θ = tan 1 ( 0 . 0208 ) = 1 . 19º . size 12{θ="tan" rSup { size 8{ - 1} } \( - 0 "." "0208" \) = - 1 "." "19"º "."} {}

Discussion

In part (a), the final velocity relative to the plane is the same as it would be if the coin were dropped from rest on the Earth and fell 1.50 m. This result fits our experience; objects in a plane fall the same way when the plane is flying horizontally as when it is at rest on the ground. This result is also true in moving cars. In part (b), an observer on the ground sees a much different motion for the coin. The plane is moving so fast horizontally to begin with that its final velocity is barely greater than the initial velocity. Once again, we see that in two dimensions, vectors do not add like ordinary numbers—the final velocity v in part (b) is not ( 260 – 5 . 42 )  m/s size 12{ \( "260 – 5" "." "42" \) " m/s"} {} ; rather, it is 260 . 06 m/s size 12{"260" "." "06 m/s"} {} . The velocity's magnitude had to be calculated to five digits to see any difference from that of the airplane. The motions as seen by different observers (one in the plane and one on the ground) in this example are analogous to those discussed for the binoculars dropped from the mast of a moving ship, except that the velocity of the plane is much larger, so that the two observers see very different paths. (See [link] .) In addition, both observers see the coin fall 1.50 m vertically, but the one on the ground also sees it move forward 144 m (this calculation is left for the reader). Thus, one observer sees a vertical path, the other a nearly horizontal path.

Questions & Answers

what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
What are the treatment for autism?
Magret Reply
hello. autism is a umbrella term. autistic kids have different disorder overlapping. for example. a kid may show symptoms of ADHD and also learning disabilities. before treatment please make sure the kid doesn't have physical disabilities like hearing..vision..speech problem. sometimes these
Jharna
continue.. sometimes due to these physical problems..the diagnosis may be misdiagnosed. treatment for autism. well it depends on the severity. since autistic kids have problems in communicating and adopting to the environment.. it's best to expose the child in situations where the child
Jharna
child interact with other kids under doc supervision. play therapy. speech therapy. Engaging in different activities that activate most parts of the brain.. like drawing..painting. matching color board game. string and beads game. the more you interact with the child the more effective
Jharna
results you'll get.. please consult a therapist to know what suits best on your child. and last as a parent. I know sometimes it's overwhelming to guide a special kid. but trust the process and be strong and patient as a parent.
Jharna
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask