<< Chapter < Page Chapter >> Page >
P + 1 2 ρv 2 + ρ gh = constant, size 12{P+ { {1} over {2} } ρv rSup { size 8{2} } +ρ ital "gh"="constant,"} {}

where P size 12{P} {} is the absolute pressure, ρ size 12{ρ} {} is the fluid density, v size 12{v} {} is the velocity of the fluid, h size 12{h} {} is the height above some reference point, and g size 12{g} {} is the acceleration due to gravity. If we follow a small volume of fluid along its path, various quantities in the sum may change, but the total remains constant. Let the subscripts 1 and 2 refer to any two points along the path that the bit of fluid follows; Bernoulli's equation becomes

P 1 + 1 2 ρv 1 2 + ρ gh 1 = P 2 + 1 2 ρv 2 2 + ρ gh 2 . size 12{P rSub { size 8{1} } + { {1} over {2} } ρv rSub { size 8{1} } "" lSup { size 8{2} } +ρ ital "gh" rSub { size 8{1} } =P rSub { size 8{2} } + { {1} over {2} } ρv rSub { size 8{2} } "" lSup { size 8{2} } +ρ ital "gh" rSub { size 8{2} } "." } {}

Bernoulli's equation is a form of the conservation of energy principle. Note that the second and third terms are the kinetic and potential energy with m size 12{m} {} replaced by ρ size 12{ρ} {} . In fact, each term in the equation has units of energy per unit volume. We can prove this for the second term by substituting ρ = m / V size 12{ρ=m/V} {} into it and gathering terms:

1 2 ρv 2 = 1 2 mv 2 V = KE V . size 12{ { {1} over {2} } ρv rSup { size 8{2} } = { { { {1} over {2} } ital "mv" rSup { size 8{2} } } over {V} } = { {"KE"} over {V} } "."} {}

So 1 2 ρv 2 size 12{ { { size 8{1} } over { size 8{2} } } ρv rSup { size 8{2} } } {} is the kinetic energy per unit volume. Making the same substitution into the third term in the equation, we find

ρ gh = mgh V = PE g V , size 12{ρ ital "gh"= { { ital "mgh"} over {V} } = { {"PE" rSub { size 8{"g"} } } over {V} } "."} {}

so ρ gh size 12{ρ ital "gh"} {} is the gravitational potential energy per unit volume. Note that pressure P size 12{P} {} has units of energy per unit volume, too. Since P = F / A size 12{P=F/A} {} , its units are N/m 2 size 12{"N/m" rSup { size 8{2} } } {} . If we multiply these by m/m, we obtain N m/m 3 = J/m 3 size 12{N cdot "m/m" rSup { size 8{3} } ="J/m" rSup { size 8{3} } } {} , or energy per unit volume. Bernoulli's equation is, in fact, just a convenient statement of conservation of energy for an incompressible fluid in the absence of friction.

Making connections: conservation of energy

Conservation of energy applied to fluid flow produces Bernoulli's equation. The net work done by the fluid's pressure results in changes in the fluid's KE size 12{"KE"} {} and PE g size 12{"PE" rSub { size 8{g} } } {} per unit volume. If other forms of energy are involved in fluid flow, Bernoulli's equation can be modified to take these forms into account. Such forms of energy include thermal energy dissipated because of fluid viscosity.

The general form of Bernoulli's equation has three terms in it, and it is broadly applicable. To understand it better, we will look at a number of specific situations that simplify and illustrate its use and meaning.

Bernoulli's equation for static fluids

Let us first consider the very simple situation where the fluid is static—that is, v 1 = v 2 = 0 size 12{v rSub { size 8{1} } =v rSub { size 8{2} } =0} {} . Bernoulli's equation in that case is

P 1 + ρ gh 1 = P 2 + ρ gh 2 . size 12{P rSub { size 8{1} } +ρ ital "gh" rSub { size 8{1} } =P rSub { size 8{2} } +ρ ital "gh" rSub { size 8{2} } "."} {}

We can further simplify the equation by taking h 2 = 0 size 12{h rSub { size 8{2} } =0} {} (we can always choose some height to be zero, just as we often have done for other situations involving the gravitational force, and take all other heights to be relative to this). In that case, we get

P 2 = P 1 + ρ gh 1 . size 12{P rSub { size 8{2} } =P rSub { size 8{1} } +ρ ital "gh" rSub { size 8{1} } "."} {}

This equation tells us that, in static fluids, pressure increases with depth. As we go from point 1 to point 2 in the fluid, the depth increases by h 1 size 12{h rSub { size 8{1} } } {} , and consequently, P 2 size 12{P rSub { size 8{2} } } {} is greater than P 1 size 12{P rSub { size 8{1} } } {} by an amount ρ gh 1 size 12{ρ ital "gh" rSub { size 8{1} } } {} . In the very simplest case, P 1 size 12{P rSub { size 8{1} } } {} is zero at the top of the fluid, and we get the familiar relationship P = ρ gh size 12{P=ρ ital "gh"} {} . (Recall that P = ρgh size 12{P=hρg} {} and Δ PE g = mgh . size 12{Δ"PE" rSub { size 8{g} } = ital "mgh"} {} ) Bernoulli's equation includes the fact that the pressure due to the weight of a fluid is ρ gh size 12{ρ ital "gh"} {} . Although we introduce Bernoulli's equation for fluid flow, it includes much of what we studied for static fluids in the preceding chapter.

Questions & Answers

Ayele, K., 2003. Introductory Economics, 3rd ed., Addis Ababa.
Widad Reply
can you send the book attached ?
Ariel
?
Ariel
What is economics
Widad Reply
the study of how humans make choices under conditions of scarcity
AI-Robot
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn Reply
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn
what is ecnomics
Jan Reply
this is the study of how the society manages it's scarce resources
Belonwu
what is macroeconomic
John Reply
macroeconomic is the branch of economics which studies actions, scale, activities and behaviour of the aggregate economy as a whole.
husaini
etc
husaini
difference between firm and industry
husaini Reply
what's the difference between a firm and an industry
Abdul
firm is the unit which transform inputs to output where as industry contain combination of firms with similar production 😅😅
Abdulraufu
Suppose the demand function that a firm faces shifted from Qd  120 3P to Qd  90  3P and the supply function has shifted from QS  20  2P to QS 10  2P . a) Find the effect of this change on price and quantity. b) Which of the changes in demand and supply is higher?
Toofiq Reply
explain standard reason why economic is a science
innocent Reply
factors influencing supply
Petrus Reply
what is economic.
Milan Reply
scares means__________________ends resources. unlimited
Jan
economics is a science that studies human behaviour as a relationship b/w ends and scares means which have alternative uses
Jan
calculate the profit maximizing for demand and supply
Zarshad Reply
Why qualify 28 supplies
Milan
what are explicit costs
Nomsa Reply
out-of-pocket costs for a firm, for example, payments for wages and salaries, rent, or materials
AI-Robot
concepts of supply in microeconomics
David Reply
economic overview notes
Amahle Reply
identify a demand and a supply curve
Salome Reply
i don't know
Parul
there's a difference
Aryan
Demand curve shows that how supply and others conditions affect on demand of a particular thing and what percent demand increase whith increase of supply of goods
Israr
Hi Sir please how do u calculate Cross elastic demand and income elastic demand?
Abari
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask