<< Chapter < Page Chapter >> Page >

Note that the electric field is defined for a positive test charge q size 12{q} {} , so that the field lines point away from a positive charge and toward a negative charge. (See [link] .) The electric field strength is exactly proportional to the number of field lines per unit area, since the magnitude of the electric field for a point charge is E = k | Q | / r 2 size 12{E= { ital "kQ"} slash {r rSup { size 8{2} } } } {} and area is proportional to r 2 size 12{r rSup { size 8{2} } } {} . This pictorial representation, in which field lines represent the direction and their closeness (that is, their areal density or the number of lines crossing a unit area) represents strength, is used for all fields: electrostatic, gravitational, magnetic, and others.

In part a, electric field lines emanating from a positive charge is shown by the vector arrows in all direction of two dimensional space and the density of these field lines is less. In part b, electric field lines entering the negative charge is shown by the vector arrows coming from all direction of two dimensional space and the density of these field lines is less. In part c, electric field lines entering the negative charge is shown by the vector arrows coming from all direction of two dimensional space and the density of these field lines is large.
The electric field surrounding three different point charges. (a) A positive charge. (b) A negative charge of equal magnitude. (c) A larger negative charge.

In many situations, there are multiple charges. The total electric field created by multiple charges is the vector sum of the individual fields created by each charge. The following example shows how to add electric field vectors.

Adding electric fields

Find the magnitude and direction of the total electric field due to the two point charges, q 1 size 12{q rSub { size 8{1} } } {} and q 2 size 12{q rSub { size 8{2} } } {} , at the origin of the coordinate system as shown in [link] .

Two charges are placed on a coordinate axes. Q two is at the position x equals 4 and y equals 0 centimeters. Q one is at the position x equals 0 and y equals two centimeters. Charge on q one is plus five point zero nano coulomb and charge on q two is plus ten nano coulomb. The electric field, E one having a magnitude of one point one three multiplied by ten raise to the power five Newton per coulomb is represented by a vector arrow along positive y axis starting from the origin. The electric field, E two having magnitude zero point five six multiplied by ten raise to the power five Newton per coulomb is represented by a vector arrow along negative x axis starting from the origin. The resultant field makes an angle of sixty three point four degree above the negative y axis having magnitude one point two six multiplied by ten raise to the power five Newton per coulomb is represented by a vector arrow pointing away from the origin in the second quadrant.
The electric fields E 1 size 12{E rSub { size 8{1} } } {} and E 2 size 12{E rSub { size 8{2} } } {} at the origin O add to E tot size 12{E rSub { size 8{"tot"} } } {} .

Strategy

Since the electric field is a vector (having magnitude and direction), we add electric fields with the same vector techniques used for other types of vectors. We first must find the electric field due to each charge at the point of interest, which is the origin of the coordinate system (O) in this instance. We pretend that there is a positive test charge, q size 12{q} {} , at point O, which allows us to determine the direction of the fields E 1 size 12{E rSub { size 8{1} } } {} and E 2 size 12{E rSub { size 8{2} } } {} . Once those fields are found, the total field can be determined using vector addition    .

Solution

The electric field strength at the origin due to q 1 size 12{q rSub { size 8{1} } } {} is labeled E 1 size 12{E rSub { size 8{1} } } {} and is calculated:

E 1 = k q 1 r 1 2 = 8 . 99 × 10 9 N m 2 /C 2 5 . 00 × 10 9 C 2 . 00 × 10 2 m 2 E 1 = 1 . 124 × 10 5 N/C . alignl { stack { size 12{E rSub { size 8{1} } =k { {q rSub { size 8{1} } } over {r rSub { size 8{1} } rSup { size 8{2} } } } = left (9 "." "00" times "10" rSup { size 8{9} } N cdot m rSup { size 8{2} } "/C" rSup { size 8{2} } right ) { { left (5 "." "00" times "10" rSup { size 8{ - 9} } C right )} over { left (2 "." "00" times "10" rSup { size 8{ - 2} } m right ) rSup { size 8{2} } } } } {} #E rSub { size 8{1} } =1 "." "125" times "10" rSup { size 8{5} } "N/C" {} } } {}

Similarly, E 2 size 12{E rSub { size 8{2} } } {} is

E 2 = k q 2 r 2 2 = 8 . 99 × 10 9 N m 2 /C 2 10 . 0 × 10 9 C 4 . 00 × 10 2 m 2 E 2 = 0 . 5619 × 10 5 N/C . alignl { stack { size 12{E rSub { size 8{2} } =k { {q rSub { size 8{2} } } over {r rSub { size 8{2} } rSup { size 8{2} } } } = left (9 "." "00" times "10" rSup { size 8{9} } N cdot m rSup { size 8{2} } "/C" rSup { size 8{2} } right ) { { left ("10" "." 0 times "10" rSup { size 8{ - 9} } C right )} over { left (4 "." "00" times "10" rSup { size 8{ - 2} } m right ) rSup { size 8{2} } } } } {} #E rSub { size 8{2} } =0 "." "5625" times "10" rSup { size 8{5} } "N/C" {} } } {}

Four digits have been retained in this solution to illustrate that E 1 size 12{E rSub { size 8{1} } } {} is exactly twice the magnitude of E 2 size 12{E rSub { size 8{2} } } {} . Now arrows are drawn to represent the magnitudes and directions of E 1 size 12{E rSub { size 8{1} } } {} and E 2 size 12{E rSub { size 8{2} } } {} . (See [link] .) The direction of the electric field is that of the force on a positive charge so both arrows point directly away from the positive charges that create them. The arrow for E 1 size 12{E rSub { size 8{1} } } {} is exactly twice the length of that for E 2 size 12{E rSub { size 8{2} } } {} . The arrows form a right triangle in this case and can be added using the Pythagorean theorem. The magnitude of the total field E tot size 12{E rSub { size 8{"tot"} } } {} is

E tot = ( E 1 2 + E 2 2 ) 1/2 = { ( 1.124 × 10 5 N/C ) 2 + ( 0.5619 × 10 5 N/C ) 2 } 1/2 = 1.26 × 10 5 N/C. alignl { stack { size 12{E rSub { size 8{ ital "tot"} } `= \( E rSub { size 8{1} } rSup { size 8{2} } `+`E rSub { size 8{2} } rSup { size 8{2} } \) rSup { size 8{ {1} wideslash {2} } } } {} #~``=` lbrace \( 1 "." "125" times "10" rSup { size 8{5} } `"N/C" \) rSup { size 8{2} } `+` \( 0 "." "5625" times "10" rSup { size 8{5} } `"N/C" \) rSup { size 8{2} } rbrace rSup { size 8{ {1} wideslash {2} } } {} # `~`=``1 "." "26" times "10" rSup { size 8{5} } `"N/C" {}} } {}

The direction is

θ = tan 1 E 1 E 2 = tan 1 1 . 124 × 10 5 N/C 0 . 5619 × 10 5 N/C = 63 . , alignl { stack { size 12{θ="tan" rSup { size 8{ - 1} } left ( { {E rSub { size 8{1} } } over {E rSub { size 8{2} } } } right )} {} #="tan" rSup { size 8{ - 1} } left lbrace { {1 "." "125" times "10" rSup { size 8{5} } " N/C"} over {0 "." "5625" times "10" rSup { size 8{5} } " N/C"} } right rbrace {} # ="63" "." 4° {}} } {}

or 63.4º above the x -axis.

Discussion

In cases where the electric field vectors to be added are not perpendicular, vector components or graphical techniques can be used. The total electric field found in this example is the total electric field at only one point in space. To find the total electric field due to these two charges over an entire region, the same technique must be repeated for each point in the region. This impossibly lengthy task (there are an infinite number of points in space) can be avoided by calculating the total field at representative points and using some of the unifying features noted next.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask