<< Chapter < Page Chapter >> Page >
  • Calculate relativistic velocity addition.
  • Explain when relativistic velocity addition should be used instead of classical addition of velocities.
  • Calculate relativistic Doppler shift.
A man with oar in his hand is kayaking downstream in a shallow fast-flowing river.
The total velocity of a kayak, like this one on the Deerfield River in Massachusetts, is its velocity relative to the water as well as the water’s velocity relative to the riverbank. (credit: abkfenris, Flickr)

If you’ve ever seen a kayak move down a fast-moving river, you know that remaining in the same place would be hard. The river current pulls the kayak along. Pushing the oars back against the water can move the kayak forward in the water, but that only accounts for part of the velocity. The kayak’s motion is an example of classical addition of velocities. In classical physics, velocities add as vectors. The kayak’s velocity is the vector sum of its velocity relative to the water and the water’s velocity relative to the riverbank.

Classical velocity addition

For simplicity, we restrict our consideration of velocity addition to one-dimensional motion. Classically, velocities add like regular numbers in one-dimensional motion. (See [link] .) Suppose, for example, a girl is riding in a sled at a speed 1.0 m/s relative to an observer. She throws a snowball first forward, then backward at a speed of 1.5 m/s relative to the sled. We denote direction with plus and minus signs in one dimension; in this example, forward is positive. Let v size 12{v} {} be the velocity of the sled relative to the Earth, u size 12{u} {} the velocity of the snowball relative to the Earth-bound observer, and u size 12{u rSup { size 8{'} } } {} the velocity of the snowball relative to the sled.

In part a, a man is pulling a sled towards the right with a velocity v equals one point zero meters per second. A girl sitting on the sled facing forward throws a snowball toward a boy on the far right of the picture. The snowball is labeled u primed equals one point five meters per second in the direction the sled is being pulled. The boy is labelled two point five meters per second. In figure b, a similar figure is shown, but the man’s velocity is one point zero meters per second, the girl is facing backward and throwing the snowball behind the sled. The snowball is labelled u primed equals negative one point five meters per second, and the boy is labelled u equals negative zero point five meters per second.
Classically, velocities add like ordinary numbers in one-dimensional motion. Here the girl throws a snowball forward and then backward from a sled. The velocity of the sled relative to the Earth is v= 1 . 0 m/s size 12{ ital "v="1 "." 0`"m/s"} {} . The velocity of the snowball relative to the truck is u size 12{u rSup { size 8{'} } } {} , while its velocity relative to the Earth is u size 12{u} {} . Classically, u=v+u .

Classical velocity addition

u=v+u

Thus, when the girl throws the snowball forward, u = 1.0 m/s + 1.5 m/s = 2.5 m/s . It makes good intuitive sense that the snowball will head towards the Earth-bound observer faster, because it is thrown forward from a moving vehicle. When the girl throws the snowball backward, u = 1.0 m/s + ( 1.5 m/s ) = 0.5 m/s . The minus sign means the snowball moves away from the Earth-bound observer.

Relativistic velocity addition

The second postulate of relativity (verified by extensive experimental observation) says that classical velocity addition does not apply to light. Imagine a car traveling at night along a straight road, as in [link] . If classical velocity addition applied to light, then the light from the car’s headlights would approach the observer on the sidewalk at a speed u=v+c size 12{ ital "u=v+c"} {} . But we know that light will move away from the car at speed c size 12{c} {} relative to the driver of the car, and light will move towards the observer on the sidewalk at speed c size 12{c} {} , too.

A car is moving towards right with velocity v. A boy standing on the side-walk observes the car. The velocity of light u primed is shown to be c as observed by the girl in the car and the velocity of light u is also c as observed by the boy.
According to experiment and the second postulate of relativity, light from the car’s headlights moves away from the car at speed c size 12{c} {} and towards the observer on the sidewalk at speed c size 12{c} {} . Classical velocity addition is not valid.

Questions & Answers

material that allows electric current to pass through
Deng Reply
material which don't allow electric current is called
Deng
insulators
Covenant
how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask