<< Chapter < Page Chapter >> Page >
  • Explain how the energy and amplitude of an electromagnetic wave are related.
  • Given its power output and the heating area, calculate the intensity of a microwave oven’s electromagnetic field, as well as its peak electric and magnetic field strengths

Anyone who has used a microwave oven knows there is energy in electromagnetic waves    . Sometimes this energy is obvious, such as in the warmth of the summer sun. Other times it is subtle, such as the unfelt energy of gamma rays, which can destroy living cells.

Electromagnetic waves can bring energy into a system by virtue of their electric and magnetic fields . These fields can exert forces and move charges in the system and, thus, do work on them. If the frequency of the electromagnetic wave is the same as the natural frequencies of the system (such as microwaves at the resonant frequency of water molecules), the transfer of energy is much more efficient.

Connections: waves and particles

The behavior of electromagnetic radiation clearly exhibits wave characteristics. But we shall find in later modules that at high frequencies, electromagnetic radiation also exhibits particle characteristics. These particle characteristics will be used to explain more of the properties of the electromagnetic spectrum and to introduce the formal study of modern physics.

Another startling discovery of modern physics is that particles, such as electrons and protons, exhibit wave characteristics. This simultaneous sharing of wave and particle properties for all submicroscopic entities is one of the great symmetries in nature.

The propagation of two electromagnetic waves is shown in three dimensional planes. The first wave shows with the variation of two components E and B. E is a sine wave in one plane with small arrows showing the vibrations of particles in the plane. B is a sine wave in a plane perpendicular to the E wave. The B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because E and B are perpendicular to each other. The direction of propagation of wave is shown perpendicular to E and B waves. The energy carried is given as E sub u. The second wave shows with the variation of the components two E and two B, that is, E and B waves with double the amplitude of the first case. Two E is a sine wave in one plane with small arrows showing the vibrations of particles in the plane. Two B is a sine wave in a plane perpendicular to the two E wave. The two B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because two E and two B waves are perpendicular to each other. The direction of propagation of wave is shown perpendicular to two E and two B waves. The energy carried is given as four E sub u.
Energy carried by a wave is proportional to its amplitude squared. With electromagnetic waves, larger E size 12{E} {} -fields and B size 12{B} {} -fields exert larger forces and can do more work.

But there is energy in an electromagnetic wave, whether it is absorbed or not. Once created, the fields carry energy away from a source. If absorbed, the field strengths are diminished and anything left travels on. Clearly, the larger the strength of the electric and magnetic fields, the more work they can do and the greater the energy the electromagnetic wave carries.

A wave’s energy is proportional to its amplitude    squared ( E 2 size 12{E rSup { size 8{2} } } {} or B 2 size 12{B rSup { size 8{2} } } {} ). This is true for waves on guitar strings, for water waves, and for sound waves, where amplitude is proportional to pressure. In electromagnetic waves, the amplitude is the maximum field strength    of the electric and magnetic fields. (See [link] .)

Thus the energy carried and the intensity     I size 12{I} {} of an electromagnetic wave is proportional to E 2 size 12{E rSup { size 8{2} } } {} and B 2 size 12{B rSup { size 8{2} } } {} . In fact, for a continuous sinusoidal electromagnetic wave, the average intensity I ave size 12{I rSub { size 8{"ave"} } } {} is given by

I ave = 0 E 0 2 2 , size 12{I rSub { size 8{"ave"} } = { {ce rSub { size 8{0} } E rSub { size 8{0} } rSup { size 8{2} } } over {2} } } {}

where c size 12{c} {} is the speed of light, ε 0 size 12{ε rSub { size 8{0} } } {} is the permittivity of free space, and E 0 size 12{E rSub { size 8{0} } } {} is the maximum electric field strength; intensity, as always, is power per unit area (here in W/m 2 size 12{"W/m" rSup { size 8{2} } } {} ).

The average intensity of an electromagnetic wave I ave size 12{I rSub { size 8{"ave"} } } {} can also be expressed in terms of the magnetic field strength by using the relationship B = E / c size 12{B= {E} slash {c} } {} , and the fact that ε 0 = 1 / μ 0 c 2 size 12{ε rSub { size 8{0} } = {1} slash {μ rSub { size 8{0} } } c rSup { size 8{2} } } {} , where μ 0 size 12{μ rSub { size 8{0} } } {} is the permeability of free space. Algebraic manipulation produces the relationship

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask