<< Chapter < Page Chapter >> Page >
  • Calculate the current in an RL circuit after a specified number of characteristic time steps.
  • Calculate the characteristic time of an RL circuit.
  • Sketch the current in an RL circuit over time.

We know that the current through an inductor L size 12{L} {} cannot be turned on or off instantaneously. The change in current changes flux, inducing an emf opposing the change (Lenz’s law). How long does the opposition last? Current will flow and can be turned off, but how long does it take? [link] shows a switching circuit that can be used to examine current through an inductor as a function of time.

Part a of the figure shows an inductor connected in series with a resistor. The arrangement is connected across a cell by an on and off switch with two positions. When in position one, the battery, resistor, and inductor are in series and a current is established. In position two, the battery is removed and the current stops eventually because of energy loss in the resistor. Part b of the diagram shows the graph when the switch is in position one. It shows a graph for current growth verses time. The current is along the Y axis and the time is along the X axis. The graph shows a smooth rise from origin to a maximum value I zero corresponding to Y axis and value four tau on X axis. Part c of the diagram shows the graph when the switch is in position two. It shows a graph for current decay verses time is shown. The current is along the Y axis and the time is along the X axis. The graph is decreasing curve from a value I zero on Y axis, touching the X axis at a point where value of time equals four tau.
(a) An RL circuit with a switch to turn current on and off. When in position 1, the battery, resistor, and inductor are in series and a current is established. In position 2, the battery is removed and the current eventually stops because of energy loss in the resistor. (b) A graph of current growth versus time when the switch is moved to position 1. (c) A graph of current decay when the switch is moved to position 2.

When the switch is first moved to position 1 (at t = 0 size 12{t=0} {} ), the current is zero and it eventually rises to I 0 = V/R size 12{I rSub { size 8{0} } = ital "V/R"} {} , where R is the total resistance of the circuit. The opposition of the inductor L size 12{L} {} is greatest at the beginning, because the amount of change is greatest. The opposition it poses is in the form of an induced emf, which decreases to zero as the current approaches its final value. The opposing emf is proportional to the amount of change left. This is the hallmark of an exponential behavior, and it can be shown with calculus that

I = I 0 ( 1 e t / τ )     (turning on), size 12{I=I rSub { size 8{0} } \( 1 - e rSup { size 8{ - t/τ} } \) } {}

is the current in an RL circuit when switched on (Note the similarity to the exponential behavior of the voltage on a charging capacitor). The initial current is zero and approaches I 0 = V/R size 12{I rSub { size 8{0} } = ital "V/R"} {} with a characteristic time constant     τ for an RL circuit, given by

τ = L R , size 12{τ= { {L} over {R} } } {}

where τ size 12{τ} {} has units of seconds, since 1 H = 1 Ω · s . In the first period of time τ size 12{τ} {} , the current rises from zero to 0 . 632 I 0 size 12{0 "." "632"I rSub { size 8{0} } } {} , since I = I 0 ( 1 e 1 ) = I 0 ( 1 0 . 368 ) = 0 . 632 I 0 size 12{I=I rSub { size 8{0} } \( 1 - e rSup { size 8{ - 1} } \) =I rSub { size 8{0} } \( 1 - 0 "." "368" \) =0 "." "632"I rSub { size 8{0} } } {} . The current will go 0.632 of the remainder in the next time τ size 12{τ} {} . A well-known property of the exponential is that the final value is never exactly reached, but 0.632 of the remainder to that value is achieved in every characteristic time τ size 12{τ} {} . In just a few multiples of the time τ size 12{τ} {} , the final value is very nearly achieved, as the graph in [link] (b) illustrates.

The characteristic time τ size 12{τ} {} depends on only two factors, the inductance L size 12{L} {} and the resistance R size 12{R} {} . The greater the inductance L size 12{L} {} , the greater τ size 12{τ} {} is, which makes sense since a large inductance is very effective in opposing change. The smaller the resistance R size 12{R} {} , the greater τ size 12{τ} {} is. Again this makes sense, since a small resistance means a large final current and a greater change to get there. In both cases—large L size 12{L} {} and small R size 12{R} {} —more energy is stored in the inductor and more time is required to get it in and out.

When the switch in [link] (a) is moved to position 2 and cuts the battery out of the circuit, the current drops because of energy dissipation by the resistor. But this is also not instantaneous, since the inductor opposes the decrease in current by inducing an emf in the same direction as the battery that drove the current. Furthermore, there is a certain amount of energy, ( 1/2 ) LI 0 2 size 12{ \( "1/2" \) ital "LI" rSub { size 8{0} } rSup { size 8{2} } } {} , stored in the inductor, and it is dissipated at a finite rate. As the current approaches zero, the rate of decrease slows, since the energy dissipation rate is I 2 R size 12{ I rSup { size 8{2} } R} {} . Once again the behavior is exponential, and I is found to be

Questions & Answers

how did you get 1640
Noor Reply
If auger is pair are the roots of equation x2+5x-3=0
Peter Reply
Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.
MATTHEW Reply
420
Sharon
from theory: distance [miles] = speed [mph] × time [hours] info #1 speed_Dennis × 1.5 = speed_Wayne × 2 => speed_Wayne = 0.75 × speed_Dennis (i) info #2 speed_Dennis = speed_Wayne + 7 [mph] (ii) use (i) in (ii) => [...] speed_Dennis = 28 mph speed_Wayne = 21 mph
George
Let W be Wayne's speed in miles per hour and D be Dennis's speed in miles per hour. We know that W + 7 = D and W * 2 = D * 1.5. Substituting the first equation into the second: W * 2 = (W + 7) * 1.5 W * 2 = W * 1.5 + 7 * 1.5 0.5 * W = 7 * 1.5 W = 7 * 3 or 21 W is 21 D = W + 7 D = 21 + 7 D = 28
Salma
Devon is 32 32​​ years older than his son, Milan. The sum of both their ages is 54 54​. Using the variables d d​ and m m​ to represent the ages of Devon and Milan, respectively, write a system of equations to describe this situation. Enter the equations below, separated by a comma.
Aaron Reply
find product (-6m+6) ( 3m²+4m-3)
SIMRAN Reply
-42m²+60m-18
Salma
what is the solution
bill
how did you arrive at this answer?
bill
-24m+3+3mÁ^2
Susan
i really want to learn
Amira
I only got 42 the rest i don't know how to solve it. Please i need help from anyone to help me improve my solving mathematics please
Amira
Hw did u arrive to this answer.
Aphelele
hi
Bajemah
-6m(3mA²+4m-3)+6(3mA²+4m-3) =-18m²A²-24m²+18m+18mA²+24m-18 Rearrange like items -18m²A²-24m²+42m+18A²-18
Salma
complete the table of valuesfor each given equatio then graph. 1.x+2y=3
Jovelyn Reply
x=3-2y
Salma
y=x+3/2
Salma
Hi
Enock
given that (7x-5):(2+4x)=8:7find the value of x
Nandala
3x-12y=18
Kelvin
please why isn't that the 0is in ten thousand place
Grace Reply
please why is it that the 0is in the place of ten thousand
Grace
Send the example to me here and let me see
Stephen
A meditation garden is in the shape of a right triangle, with one leg 7 feet. The length of the hypotenuse is one more than the length of one of the other legs. Find the lengths of the hypotenuse and the other leg
Marry Reply
how far
Abubakar
cool u
Enock
state in which quadrant or on which axis each of the following angles given measure. in standard position would lie 89°
Abegail Reply
hello
BenJay
hi
Method
I am eliacin, I need your help in maths
Rood
how can I help
Sir
hmm can we speak here?
Amoon
however, may I ask you some questions about Algarba?
Amoon
hi
Enock
what the last part of the problem mean?
Roger
The Jones family took a 15 mile canoe ride down the Indian River in three hours. After lunch, the return trip back up the river took five hours. Find the rate, in mph, of the canoe in still water and the rate of the current.
cameron Reply
Shakir works at a computer store. His weekly pay will be either a fixed amount, $925, or $500 plus 12% of his total sales. How much should his total sales be for his variable pay option to exceed the fixed amount of $925.
mahnoor Reply
I'm guessing, but it's somewhere around $4335.00 I think
Lewis
12% of sales will need to exceed 925 - 500, or 425 to exceed fixed amount option. What amount of sales does that equal? 425 ÷ (12÷100) = 3541.67. So the answer is sales greater than 3541.67. Check: Sales = 3542 Commission 12%=425.04 Pay = 500 + 425.04 = 925.04. 925.04 > 925.00
Munster
difference between rational and irrational numbers
Arundhati Reply
When traveling to Great Britain, Bethany exchanged $602 US dollars into £515 British pounds. How many pounds did she receive for each US dollar?
Jakoiya Reply
how to reduced echelon form
Solomon Reply
Jazmine trained for 3 hours on Saturday. She ran 8 miles and then biked 24 miles. Her biking speed is 4 mph faster than her running speed. What is her running speed?
Zack Reply
d=r×t the equation would be 8/r+24/r+4=3 worked out
Sheirtina
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask