<< Chapter < Page Chapter >> Page >
  • Describe the processes of a simple heat engine.
  • Explain the differences among the simple thermodynamic processes—isobaric, isochoric, isothermal, and adiabatic.
  • Calculate total work done in a cyclical thermodynamic process.
An old photo of a steam turbine at a turbine production plant. People are shown working on the turbine.
Beginning with the Industrial Revolution, humans have harnessed power through the use of the first law of thermodynamics, before we even understood it completely. This photo, of a steam engine at the Turbinia Works, dates from 1911, a mere 61 years after the first explicit statement of the first law of thermodynamics by Rudolph Clausius. (credit: public domain; author unknown)

One of the most important things we can do with heat transfer is to use it to do work for us. Such a device is called a heat engine    . Car engines and steam turbines that generate electricity are examples of heat engines. [link] shows schematically how the first law of thermodynamics applies to the typical heat engine.

The figure shows a schematic representation of a heat engine. The heat engine is represented by a circle. The heat entering the system is shown as Q sub in, represented as a bold arrow toward the circle, and the heat coming out of the heat engine is shown as Q sub out, represented by a narrower bold arrow leaving the circle. The work labeled as W is shown to leave the heat engine as represented by another bold arrow leaving the circle. At the center of the circle are two equations. First, the change in internal energy of the system, delta U, equals zero. Consequently, W equals Q sub in minus Q sub out.
Schematic representation of a heat engine, governed, of course, by the first law of thermodynamics. It is impossible to devise a system where Q out = 0 size 12{Q rSub { size 8{"out"} } =0} {} , that is, in which no heat transfer occurs to the environment.
Figure a shows a piston attached to a movable cylinder which is attached to the right of another gas filled cylinder. The heat Q sub in is shown to be transferred to the gas in the cylinder as shown by a bold arrow toward it. The force of the gas on the moving cylinder with the piston is shown as F equals P times A shown as a vector arrow pointing toward the right. The change in internal energy is marked in the diagram as delta U sub a equals Q sub in. Figure b shows a piston attached to a movable cylinder which is attached to the right of another gas filled cylinder. The force of the gas has moved the cylinder with the piston by a distance d toward the right. The change in internal energy is marked in the diagram as delta U sub b equals negative W sub out. The piston is shown to have done work by change in position, marked as F d equal to W sub out. Figure c shows a piston attached to a movable cylinder which is attached to the right of another gas filled cylinder. The piston attached to the cylinder is shown to reach back to the initial position shown in figure a. The distance d is traveled back and heat Q sub out is shown to leave the system as represented by an outward arrow. The force driving backward is shown as a vector arrow pointing to the left, labeled F prime. F prime is shown less than F. The work done by the force F prime is shown by the equation W sub in equal to F prime times d.
(a) Heat transfer to the gas in a cylinder increases the internal energy of the gas, creating higher pressure and temperature. (b) The force exerted on the movable cylinder does work as the gas expands. Gas pressure and temperature decrease when it expands, indicating that the gas’s internal energy has been decreased by doing work. (c) Heat transfer to the environment further reduces pressure in the gas so that the piston can be more easily returned to its starting position.

The illustrations above show one of the ways in which heat transfer does work. Fuel combustion produces heat transfer to a gas in a cylinder, increasing the pressure of the gas and thereby the force it exerts on a movable piston. The gas does work on the outside world, as this force moves the piston through some distance. Heat transfer to the gas cylinder results in work being done. To repeat this process, the piston needs to be returned to its starting point. Heat transfer now occurs from the gas to the surroundings so that its pressure decreases, and a force is exerted by the surroundings to push the piston back through some distance. Variations of this process are employed daily in hundreds of millions of heat engines. We will examine heat engines in detail in the next section. In this section, we consider some of the simpler underlying processes on which heat engines are based.

PV Diagrams and their relationship to work done on or by a gas

A process by which a gas does work on a piston at constant pressure is called an isobaric process    . Since the pressure is constant, the force exerted is constant and the work done is given as

P Δ V . size 12{PΔV} {}
The diagram shows an isobaric expansion of a gas filled cylinder held vertically. V is the volume of gas in the cylinder. A is the area of cross section of the cylinder. The cylinder has a movable piston with a rod attached to it at the top of the cylinder. A heat Q sub in is shown to enter the cylinder from below. A force F equals P times A is shown to act upward from the bottom of the cylinder. The piston is shown to have been displaced by a vertical distance d upward. The volume displaced is given by delta V equals A times d. The work output shown as W sub out is equal to F times d, which is also equal to P times A times d, which in turn equals P times delta V.
An isobaric expansion of a gas requires heat transfer to keep the pressure constant. Since pressure is constant, the work done is P Δ V size 12{PΔV} {} .
W = Fd size 12{W= ital "Fd"} {}

See the symbols as shown in [link] . Now F = PA size 12{F= ital "PA"} {} , and so

W = PAd . size 12{W= ital "PAd"} {}

Because the volume of a cylinder is its cross-sectional area A size 12{A} {} times its length d size 12{d} {} , we see that Ad = Δ V size 12{ ital "Ad"=ΔV} {} , the change in volume; thus,

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask