<< Chapter < Page Chapter >> Page >
  • Observe the kinematics of rotational motion.
  • Derive rotational kinematic equations.
  • Evaluate problem solving strategies for rotational kinematics.

Just by using our intuition, we can begin to see how rotational quantities like θ size 12{θ} {} , ω size 12{ω} {} , and α size 12{α} {} are related to one another. For example, if a motorcycle wheel has a large angular acceleration for a fairly long time, it ends up spinning rapidly and rotates through many revolutions. In more technical terms, if the wheel’s angular acceleration α size 12{α} {} is large for a long period of time t size 12{α} {} , then the final angular velocity ω size 12{ω} {} and angle of rotation θ size 12{θ} {} are large. The wheel’s rotational motion is exactly analogous to the fact that the motorcycle’s large translational acceleration produces a large final velocity, and the distance traveled will also be large.

Kinematics is the description of motion. The kinematics of rotational motion    describes the relationships among rotation angle, angular velocity, angular acceleration, and time. Let us start by finding an equation relating ω size 12{ω} {} , α size 12{α} {} , and t size 12{t} {} . To determine this equation, we recall a familiar kinematic equation for translational, or straight-line, motion:

v = v 0 + at       ( constant  a ) size 12{v=v rSub { size 8{0} } + ital "at"" " \[ "constant "a \] } {}

Note that in rotational motion a = a t size 12{a=a rSub { size 8{t} } } {} , and we shall use the symbol a size 12{a} {} for tangential or linear acceleration from now on. As in linear kinematics, we assume a size 12{a} {} is constant, which means that angular acceleration α size 12{α} {} is also a constant, because a = size 12{a=rα} {} . Now, let us substitute v = size 12{v=rω} {} and a = size 12{a=rα} {} into the linear equation above:

= 0 + rαt . size 12{rω=rω rSub { size 8{0} } +rαt} {}

The radius r size 12{r} {} cancels in the equation, yielding

ω = ω 0 + at       ( constant  a ) , size 12{ω=ω rSub { size 8{0} } + ital "at"" " \[ "constant "a \] ,} {}

where ω 0 size 12{ω rSub { size 8{0} } } {} is the initial angular velocity. This last equation is a kinematic relationship among ω size 12{ω} {} , α size 12{α} {} , and t size 12{t} {} —that is, it describes their relationship without reference to forces or masses that may affect rotation. It is also precisely analogous in form to its translational counterpart.

Making connections

Kinematics for rotational motion is completely analogous to translational kinematics, first presented in One-Dimensional Kinematics . Kinematics is concerned with the description of motion without regard to force or mass. We will find that translational kinematic quantities, such as displacement, velocity, and acceleration have direct analogs in rotational motion.

Starting with the four kinematic equations we developed in One-Dimensional Kinematics , we can derive the following four rotational kinematic equations (presented together with their translational counterparts):

Rotational kinematic equations
Rotational Translational
θ = ω ¯ t size 12{θ= {overline {ωt}} } {} x = v - t size 12{x= { bar {v}}t} {}
ω = ω 0 + αt size 12{ω=ω rSub { size 8{0} } +αt} {} v = v 0 + at size 12{v=v rSub { size 8{0} } + ital "at"} {} (constant α size 12{α} {} , a size 12{a} {} )
θ = ω 0 t + 1 2 αt 2 size 12{θ=ω rSub { size 8{0} } t+ { {1} over {2} } αt rSup { size 8{2} } } {} x = v 0 t + 1 2 at 2 size 12{x=v rSub { size 8{0} } t+ { {1} over {2} } ital "at" rSup { size 8{2} } } {} (constant α size 12{α} {} , a size 12{a} {} )
ω 2 = ω 0 2 + 2 αθ size 12{ω rSup { size 8{2} } =ω rSub { size 8{0} rSup { size 8{2} } } +2 ital "αθ"} {} v 2 = v 0 2 + 2 ax (constant α , a )

In these equations, the subscript 0 denotes initial values ( θ 0 size 12{θ rSub { size 8{0} } } {} , x 0 size 12{x rSub { size 8{0} } } {} , and t 0 size 12{t rSub { size 8{0} } } {} are initial values), and the average angular velocity ω - size 12{ { bar {ω}}} {} and average velocity v - size 12{ { bar {v}}} {} are defined as follows:

ω ¯ = ω 0 + ω 2  and  v ¯ = v 0 + v 2 . size 12{ {overline {ω}} = { {ω rSub { size 8{0} } +ω} over {2} } " and " {overline {v}} = { {v rSub { size 8{0} } +v} over {2} } " " \( "constant "α, a \) } {}

The equations given above in [link] can be used to solve any rotational or translational kinematics problem in which a size 12{a} {} and α size 12{α} {} are constant.

Problem-solving strategy for rotational kinematics

  1. Examine the situation to determine that rotational kinematics (rotational motion) is involved . Rotation must be involved, but without the need to consider forces or masses that affect the motion.
  2. Identify exactly what needs to be determined in the problem (identify the unknowns) . A sketch of the situation is useful.
  3. Make a list of what is given or can be inferred from the problem as stated (identify the knowns) .
  4. Solve the appropriate equation or equations for the quantity to be determined (the unknown) . It can be useful to think in terms of a translational analog because by now you are familiar with such motion.
  5. Substitute the known values along with their units into the appropriate equation, and obtain numerical solutions complete with units . Be sure to use units of radians for angles.
  6. Check your answer to see if it is reasonable: Does your answer make sense ?

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask