<< Chapter < Page Chapter >> Page >

4x 3 y 6y 2 ÷ xy 3x 2 × 2 xy 2 3x size 12{ { {4x rSup { size 8{3} } y} over {6y rSup { size 8{2} } } } div { { ital "xy"} over {3x rSup { size 8{2} } } } times { {2 ital "xy" rSup { size 8{2} } } over {3x} } } {} = 4x 3 y 6y 2 × 3x 2 xy × 2 xy 2 3x size 12{ { {4x rSup { size 8{3} } y} over {6y rSup { size 8{2} } } } times { {3x rSup { size 8{2} } } over { ital "xy"} } times { {2 ital "xy" rSup { size 8{2} } } over {3x} } } {} = 4x 4 3 size 12{ { {4x rSup { size 8{4} } } over {3} } } {}

a 2 9 2 × 1 4a 2 12 a size 12{ { {a rSup { size 8{2} } - 9} over {2} } times { {1} over {4a rSup { size 8{2} } - "12"a} } } {} = a + 3 a 3 2 × 1 4a a 3 size 12{ { { left (a+3 right ) left (a - 3 right )} over {2} } times { {1} over {4a left (a - 3 right )} } } {} = a + 3 8a size 12{ { { left (a+3 right )} over {8a} } } {}

3a + 6 5 ÷ a 2 4 10 size 12{ { {3a+6} over {5} } div { {a rSup { size 8{2} } - 4} over {"10"} } } {} = 3a + 6 5 × 10 a 2 4 size 12{ { {3a+6} over {5} } times { {"10"} over {a rSup { size 8{2} } - 4} } } {} = 3 a + 2 5 × 10 a + 2 a 2 size 12{ { {3 left (a+2 right )} over {5} } times { {"10"} over { left (a+2 right ) left (a - 2 right )} } } {} = 6 a 2 size 12{ { {6} over {a - 2} } } {}

Exercise:

Simplify:

1. 2 ab 2 b 3 c × 9 ac 2 4b ÷ 3 ac 2b 2 size 12{ { {2 ital "ab" rSup { size 8{2} } } over {b rSup { size 8{3} } c} } times { {9 ital "ac" rSup { size 8{2} } } over {4b} } div { {3 ital "ac"} over {2b rSup { size 8{2} } } } } {}

2. 2 a + 1 a 2 2 a 2 3 a + 3 × 9 a + 1 a + 3 2 4 a 2 ÷ 3 a + 1 a + 3 2 a 2 2 size 12{ { {2 left (a+1 right ) left (a - 2 right ) rSup { size 8{2} } } over { left (a - 2 right ) rSup { size 8{3} } left (a+3 right )} } times { {9 left (a+1 right ) left (a+3 right ) rSup { size 8{2} } } over {4 left (a - 2 right )} } div { {3 left (a+1 right ) left (a+3 right )} over {2 left (a - 2 right ) rSup { size 8{2} } } } } {}

3. 4a 2 + 8a 2b + 4 × 3 b 2 + 2 3a 2 + 6a size 12{ { {4a rSup { size 8{2} } +8a} over {2b+4} } times { {3 left (b rSup { size 8{2} } +2 right )} over {3a rSup { size 8{2} } +6a} } } {}

4. x 2 1 5x 5 ÷ x + 1 2 15 x + 15 size 12{ { {x rSup { size 8{2} } - 1} over {5x - 5} } div { { left (x+1 right ) rSup { size 8{2} } } over {"15"x+"15"} } } {}

5. 7x 3 xy ÷ 3x + 6 5x 2 y ÷ 5x 10 3x 2 12 size 12{ { {7x} over {3 ital "xy"} } div { {3x+6} over {5x rSup { size 8{2} } y} } div { {5x - "10"} over {3x rSup { size 8{2} } - "12"} } } {}

6. 5x 2 + 5x x 2 x 5x + 5 x 2 1 size 12{ { { { {5x rSup { size 8{2} } +5x} over {x rSup { size 8{2} } - x} } } over { { {5x+5} over {x rSup { size 8{2} } - 1} } } } } {} (here we have a fraction divided by a fraction – first rewrite it like number 4)

C. Adding fractions

You already know quite well that adding and subtracting fractions is a lot more difficult than multiplying and dividing them. The reason is that we can only add and subtract the same kind of fractions, namely fractions with identical denominators. If the denominators are different, find the lowest common multiple of the denominators (LCD), rewrite all the terms with this as denominator, and then simplify by gathering like terms together. Finally, the answer has to be simplified by cancelling factors occurring in both numerator and denominator. Here are some examples – all the steps have been shown:

Simplify:

1. 5 abx 2 cx + 4 ac 3x + cx 2a size 12{ { {5 ital "abx"} over {2 ital "cx"} } + { {4 ital "ac"} over {3x} } + { { ital "cx"} over {2a} } } {} (LCD = 6acx)

5 abx 2 cx × 3a 3a + 4 ac 3x × 2 ac 2 ac + cx 2a × 3 cx 3 cx size 12{ left ( { {5 ital "abx"} over {2 ital "cx"} } times { {3a} over {3a} } right )+ left ( { {4 ital "ac"} over {3x} } times { {2 ital "ac"} over {2 ital "ac"} } right )+ left ( { { ital "cx"} over {2a} } times { {3 ital "cx"} over {3 ital "cx"} } right )} {} = 15 a 2 bx 6 acx + 8a 2 c 2 6 acx + 3c 2 x 2 6 acx size 12{ { {"15"a rSup { size 8{2} } ital "bx"} over {6 ital "acx"} } + { {8a rSup { size 8{2} } c rSup { size 8{2} } } over {6 ital "acx"} } + { {3c rSup { size 8{2} } x rSup { size 8{2} } } over {6 ital "acx"} } } {} = 15 a 2 bx + 8a 2 c 2 + 3c 2 x 2 6 acx size 12{ { {"15"a rSup { size 8{2} } ital "bx"+8a rSup { size 8{2} } c rSup { size 8{2} } +3c rSup { size 8{2} } x rSup { size 8{2} } } over {6 ital "acx"} } } {}

2. a + b 2 + b + c 3 a + c 6 size 12{ { {a+b} over {2} } + { {b+c} over {3} } - { {a+c} over {6} } } {} (LCD = 6) Take careful note of how the signs are handled below!

3 a + b 6 + 2 b + c 6 a + c 6 size 12{ { {3 left (a+b right )} over {6} } + { {2 left (b+c right )} over {6} } - { {a+c} over {6} } } {} = 3 a + b + 2 b + c a + c 6 size 12{ { {3 left (a+b right )+2 left (b+c right ) - left (a+c right )} over {6} } } {} = 3a + 3b + 2b + 2c a c 6 size 12{ { {3a+3b+2b+2c - a - c} over {6} } } {} = 2a + 5b + c 6 size 12{ { {2a+5b+c} over {6} } } {}

3. a + 3 a 2 4 + 1 3a + 6 + 2 5a 10 size 12{ { {a+3} over {a rSup { size 8{2} } - 4} } + { {1} over {3a+6} } + { {2} over {5a - "10"} } } {}

To find Lowest Common Denominator first factorise denominators!

a + 3 a + 2 a 2 + 1 3 a + 2 + 2 5 a 2 size 12{ { {a+3} over { left (a+2 right ) left (a - 2 right )} } + { {1} over {3 left (a+2 right )} } + { {2} over {5 left (a - 2 right )} } } {}

Do you see that the LCD is 3×5×(a+2)(a–2)?

a + 3 a + 2 a 2 × 15 15 + 1 3 a + 2 × 5 a 2 5 a 2 + 2 5 a 2 × 3 a + 2 3 a + 2 size 12{ left ( { {a+3} over { left (a+2 right ) left (a - 2 right )} } times { {"15"} over {"15"} } right )+ left ( { {1} over {3 left (a+2 right )} } times { {5 left (a - 2 right )} over {5 left (a - 2 right )} } right )+ left ( { {2} over {5 left (a - 2 right )} } times { {3 left (a+2 right )} over {3 left (a+2 right )} } right )} {}

= 15 a + 3 + 5 a 2 + 6 a + 2 15 a + 2 a 2 size 12{ { {"15" left (a+3 right )+5 left (a - 2 right )+6 left (a+2 right )} over {"15" left (a+2 right ) left (a - 2 right )} } } {} = 15 a + 45 + 5a 10 + 6a + 12 15 a + 2 a 2 size 12{ { {"15"a+"45"+5a - "10"+6a+"12"} over {"15" left (a+2 right ) left (a - 2 right )} } } {} = 26 a + 47 15 a + 2 a 2 size 12{ { {"26"a+"47"} over {"15" left (a+2 right ) left (a - 2 right )} } } {}

Exercise:

Simplify the following expressions by using factorising:

1. a x 2 a x + 5a 2x size 12{ { {a} over {x rSup { size 8{2} } } } - { {a} over {x} } + { {5a} over {2x} } } {}

2. 1 3 + 2x + 1 2x x 1 3x size 12{ { {1} over {3} } + { {2x+1} over {2x} } - { {x - 1} over {3x} } } {}

3. 4a 4b 2a 2 2b 2 3 2a 2b size 12{ { {4a - 4b} over {2a rSup { size 8{2} } - 2b rSup { size 8{2} } } } - { {3} over {2a - 2b} } } {}

4. 1 2 a 2 + 2 3 a + 1 3 4 a 3 size 12{ { {1} over {2} } left (a - 2 right )+ { {2} over {3} } left (a+1 right ) - { {3} over {4} } left (a - 3 right )} {}

Assessment: Assess the 4 problems in the exercise above.

Here is one final trick. We could simplify 2 x 1 3 x + 3 × 9 x + 3 1 x size 12{ { {2 left (x - 1 right )} over {3 left (x+3 right )} } times { {9 left (x+3 right )} over { left (1 - x right )} } } {} better if (1–x) had been: (x–1).

So, we make the change we want by changing the sign of the whole binomial as well:

(1–x) = –(x–1) because –(x–1) = –x + 1, which is 1–x. Finish the problem yourself.

Assessment

Learning outcomes(LOs)
LO 1
Numbers, Operations and RelationshipsThe learner will be able to recognise, describe and represent numbers and their relationships, and to count, estimate, calculate and check with competence and confidence in solving problems.
Assessment standards(ASs)
We know this when the learner:
1.1 describes and illustrates the historical development of number systems in a variety of historical and cultural contexts (including local);
1.2 recognises, uses and represent rational numbers (including very small numbers written in scientific notation), moving flexibly between equivalent forms in appropriate contexts;
1.3 solves problems in context, including contexts that may be used to build awareness of other Learning Areas, as well as human rights, social, economic and environmental issues such as:
1.3.1 financial (including profit and loss, budgets, accounts, loans, simple and compound interest, hire purchase, exchange rates, commission, rentals and banking);
1.3.2 measurements in Natural Sciences and Technology contexts;
1.4 solves problems that involve ratio, rate and proportion (direct and indirect);
1.5 estimates and calculates by selecting and using operations appropriate to solving problems and judging the reasonableness of results (including measurement problems that involve rational approximations of irrational numbers);
1.6 uses a range of techniques and tools (including technology) to perform calculations efficiently and to the required degree of accuracy, including the following laws and meanings of exponents (the expectation being that learners should be able to use these laws and meanings in calculations only):
1.6.1 x n × x m = xn + m
1.6.2 x n  x m = xn – m
1.6.3 x 0 = 1
1.6.4 x –n = 1 x n size 12{ { {1} over {x rSup { size 8{n} } } } } {}
1.7 recognises, describes and uses the properties of rational numbers.
LO 2
Patterns, Functions and AlgebraThe learner will be able to recognise, describe and represent patterns and relationships, as well as to solve problems using algebraic language and skills.
We know this when the learner:
2.1 investigates, in different ways, a variety of numeric and geometric patterns and relationships by representing and generalising them, and by explaining and justifying the rules that generate them (including patterns found in natural and cultural forms and patterns of the learner’s own creation);
2.7 uses the distributive law and manipulative skills developed in Grade 8 to:
find the product of two binomials;
factorise algebraic expressions (limited to common factors and difference of squares).
2.8 uses the laws of exponents to simplify expressions and solve equations;
2.9 uses factorisation to simplify algebraic expressions and solve equations.

Memorandum

TEST 1

1. Simplify the following expressions by collecting like terms:

1.1 3a2 + 3a2 – 6a + 3a – 4 + 1

1.2 2y2 – 1y + 2y2 – 6 + 2y – 9

1.3 8x2 – (5x + 12x2 – 1) + x – 4

1.4 (3a – a2) – [(2a2 – 11) – (5a – 3)]

2. Give the answers to the following problems in the simplest form:

2.1 Add 3x2 + 5x – 1 to x2 – 3x

2.2 Find the sum of 2a + 3b – 5 and 3 + 2b – 7a

2.3 Subtract 6a + 7 from 5a2 + 2a + 2

2.4 How much is 3a – 8b + 3 less than a + b + 2?

3. Simplify by multiplication, leaving your answer in the simplest form:

3.1 (3x2) × (2x3)

3.2 (abc) (a2c) (2b2)

3.3 abc(a2c + 2b2)

3.4 –3a(2a2 – 5a)

3.5 (a – 2b) (a + 2b)

3.6 (3 – x2) (2x2 + 5)

3.7 (x – 5y)2

3.8 (2 – b) (3a + c)

TEST 1 – Memorandum

1.1 6a2 – 3a – 3

1.2 4y2 + y – 15

1.3 – 4x2 – 4x – 3

1.4 – 3a2 + 8a + 8

2.1 4x2 + 2x – 1

2.2 – 5a + 5b – 2

2.3 5a2 – 4a – 5

2.4 – 2a + 9b – 1

3.1 6x5

3.2 2a3b3c2

3.3 a3bc2 + 2ab3c

3.4 – 6a3 + 15a2

3.5 a2 – 4b2

3.6 –2x4 + x2 + 15

3.7 x2 – 10xy + 25y2

3.8 6a + 2c – 3ab – bc

TEST 2

1. Find the Highest Common Factor of these three expressions: 6a2c2 and 2ac2 and 10ab2c3.

2. Completely factorise these expressions by finding common factors:

2.1 12a3 + 3a4

2.2 –5xy – 15x2y2 – 20y

2.3 6a2c2 – 2ac2 + 10ab2c3

3. Factorise these differences of squares completely:

3.1 a2 – 4

3.2 1 9 a 2 9b 2 size 12{ { {1} over {9} } a rSup { size 8{2} } - 9b rSup { size 8{2} } } {}

3.3 x4 – 16y4

3.4 1 – a4b4

4. Factorise these expressions as far as possible:

4.1 3x2 – 27

4.2 2a – 8ab2

4.3 a2 – 5a – 6

4.4 a2 + 7a + 6

5. Simplify the following fractions by making use of factorising:

5.1 3a 2 3 6a + 6 size 12{ { {3a rSup { size 8{2} } - 3} over {6a+6} } } {}

5.2 6x 2 y 6y 2x 2 size 12{ { {6x rSup { size 8{2} } y - 6y} over {2x - 2} } } {}

5.3 a 2 9 2 × 1 4a 2 12 a size 12{ { {a rSup { size 8{2} } - 9} over {2} } times { {1} over {4a rSup { size 8{2} } - "12"a} } } {}

5.4 3x + 6 5 ÷ x 2 4 15 size 12{ { {3x+6} over {5} } div { {x rSup { size 8{2} } - 4} over {"15"} } } {}

5.5 abx 2 cx + 2 ac 3x + 3 cx 2a size 12{ { { ital "abx"} over {2 ital "cx"} } + { {2 ital "ac"} over {3x} } + { {3 ital "cx"} over {2a} } } {}

5.6 2a x 2 3a x + a 2x size 12{ { {2a} over {x rSup { size 8{2} } } } - { {3a} over {x} } + { {a} over {2x} } } {}

5.7 4a 4b 2a 2 2b 2 3 2a 2b size 12{ { {4a - 4b} over {2a rSup { size 8{2} } - 2b rSup { size 8{2} } } } - { {3} over {2a - 2b} } } {}

5.8 2 3 a + 2 + 1 3 a 1 1 4 a 5 size 12{ { {2} over {3} } left (a+2 right )+ { {1} over {3} } left (a - 1 right ) - { {1} over {4} } left (a - 5 right )} {}

TEST 2 – Memorandum

1. 2ac2

2.1 3a3 (4 + a2)

2.2 –5y (x + 3x2y + 4)

2.3 2ac2 (3a – 1 + 5b2c)

3.1 (a + 2) (a – 2)

3.2 1 3 a + 3b 1 3 a 3b size 12{ left ( { {1} over {3} } a+3b right ) left ( { {1} over {3} } a - 3b right )} {}

3.3 (x2 + 4y2) (x + 2y) (x – 2y)

3.4 (1 + a2b2) (1 + ab) (1 – ab)

4.1 3 (x + 3) (x – 3)

4.2 2a (1 + 4b) (1 – 4b)

4.3 (a + 1) (a – 6)

4.4 (a + 1) (a + 6)

5.1 a 1 2 size 12{ { {a - 1} over {2} } } {}

5.2 3y (x + 1)

5.3 a + 3 8a size 12{ { {a+3} over {8a} } } {}

5.4 9 x 2 size 12{ { {9} over {x - 2} } } {}

5.5 3a 2 bx + 4a 2 c 2 + 9c 2 x 2 6 acx size 12{ { {3a rSup { size 8{2} } ital "bx"+4a rSup { size 8{2} } c rSup { size 8{2} } +9c rSup { size 8{2} } x rSup { size 8{2} } } over {6 ital "acx"} } } {}

5.6 4a 5 ax 2x 2 size 12{ { {4a - 5 ital "ax"} over {2x rSup { size 8{2} } } } } {}

5.7 a 7b 2 a + b a b size 12{ { {a - 7b} over {2 left (a+b right ) left (a - b right )} } } {}

5.8 3a + 9 4 size 12{ { {3a+9} over {4} } } {}

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Mathematics grade 9. OpenStax CNX. Sep 14, 2009 Download for free at http://cnx.org/content/col11056/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Mathematics grade 9' conversation and receive update notifications?

Ask