<< Chapter < Page Chapter >> Page >
Linear prediction is a method used to estimate a time-varying filter, often as a model of a vocal tract. Musical applications of linear prediction substitute various signals as excitation sources for the time-varying filter. This mini-project guides you to develop the basic technique for computing and applying a time-varying filter in LabVIEW. After experimenting with different excitation sources and linear prediction model parameters, you will develop a VI to cross-synthesize a speech signal and a musical signal.
This module refers to LabVIEW, a software development environment that features a graphical programming language. Please see the LabVIEW QuickStart Guide module for tutorials and documentation that will help you:
•Apply LabVIEW to Audio Signal Processing
•Get started with LabVIEW
•Obtain a fully-functional evaluation edition of LabVIEW

Objective

Linear prediction is a method used to estimate a time-varying filter, often as a model of a vocal tract. Musical applications of linear prediction substitute various signals as excitation sources for the time-varying filter.

This mini-project will give you chance to develop the basic technique for computing and applying a time-varying filter. Next, you will experiment with different excitation sources and linear prediction model parameters.Finally, you will learn about cross-synthesis.

Prerequisite modules

If you have not done so already, please study the prerequisite modules Linear Prediction and Cross Synthesis . If you are relatively new to LabVIEW, consider taking the course LabVIEW Techniques for Audio Signal Processing which provides the foundation you need to complete this mini-project activity, including working with arrays, creating subVIs, playing an array to the soundcard, and saving an array as a .wav sound file.

Deliverables

  • All LabVIEW code that you develop (block diagrams and front panels)
  • All generated sounds in .wav format
  • Any plots or diagrams requested
  • Summary write-up of your results

Part 1: framing and de-framing

Time-varying filters operate by applying a fixed set of coefficients on short blocks (or "frames") of the signal; the coefficients are varied from one frame to the next. In this part you will develop the basic technique used to"frame" and "de-frame" a signal so that a filter can be applied individually to each frame.

Download and open framing.vi .

The "Reshape Array" node forms the heart of framing and de-framing, since you can reshape the incoming 1-D signal vector into a 2-D array of frames.The auto-indexing feature of the "for loop" structure automatically loops over all of the frames, so it is not necessary to wire a value to the loop termination terminal. You can access the individual frame as a 1-D vector inside the loop structure.Auto-indexing is also used on the loop output to create a new 2-D array, so "Reshape Array" is again used to convert the signal back to a 1-D vector.

Study the entire VI, including the unconnected blocks which you will find useful. Complete the VI so that you can select frame sizes of between 1 and 9. Enable the "Highlight Execution" option, and display your block diagram andfront panel simultaneously (press Ctrl-T). Convince yourself that your technique works properly. For example, when you select a frame size of 2, you should observe that the front-panel indicator "frame" displays "0,1", then "2,3", then "4,5",and so on. You should also observe that the "out" indicator matches the original.

Part 2: time-varying filter using linear prediction

Download the file part2.zip , a .zip archive that contains three VIs: part2.vi, blp.vi (band-limited pulse source), and WavRead.vi (reads a .wav audio file). Complete this VI by creating your own "Framer" and "DeFramer" VIs using the techniques you developed in Part 1.

Create or find a speech-type .wav file to use as a basis for the linear prediction filter. Vary the frame size and filter order parameters as well as the various type of excitation sources. Study the effect of each parameter and discuss your results.Submit one or two representative .wav files.

Part 3: cross synthesis

"Cross synthesis" applies the spectral envelope of one signal (e.g., speech) to another signal (e.g., a musical instrument). Find or create a speech signal and use it to generate a time-varying filter.Find or create a music signal and use it as the excitation. The sound files should have the same sampling frequency.

Repeat for a second set of signals. You might also try cross synthesizing two different speech signals or two different music signals.

Show your results, particularly the spectrograms of the two original signals and the spectrogram of the output signal.

Select your favorite result and submit .wav files of the two source signals and the output signal.

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Musical signal processing with labview -- subtractive synthesis. OpenStax CNX. Nov 07, 2007 Download for free at http://cnx.org/content/col10484/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Musical signal processing with labview -- subtractive synthesis' conversation and receive update notifications?

Ask