<< Chapter < Page Chapter >> Page >
t = b ± b 2 4 ac 2 a . size 12{t= { { - b +- sqrt {b rSup { size 8{2} } - 4 ital "ac"} } over {"2a"} } "." } {}

This equation yields two solutions: t = 3.96 size 12{t=3 "." "96"} {} and t = 1.03 size 12{t=3 "." "96"} {} . (It is left as an exercise for the reader to verify these solutions.) The time is t = 3.96 s size 12{t=3 "." "96""s"} {} or 1.03 s size 12{-1 "." "03""s"} {} . The negative value of time implies an event before the start of motion, and so we discard it. Thus,

t = 3 . 96 s . size 12{t=3 "." "96"" s."} {}

Discussion for (a)

The time for projectile motion is completely determined by the vertical motion. So any projectile that has an initial vertical velocity of 14.3 m/s and lands 20.0 m below its starting altitude will spend 3.96 s in the air.

Solution for (b)

From the information now in hand, we can find the final horizontal and vertical velocities v x size 12{v rSub { size 8{x} } } {} and v y size 12{v rSub { size 8{y} } } {} and combine them to find the total velocity v size 12{v} {} and the angle θ 0 size 12{θ rSub { size 8{0} } } {} it makes with the horizontal. Of course, v x size 12{v rSub { size 8{x} } } {} is constant so we can solve for it at any horizontal location. In this case, we chose the starting point since we know both the initial velocity and initial angle. Therefore:

v x = v 0 cos θ 0 = ( 25 . 0 m/s ) ( cos 35º ) = 20 . 5 m/s. size 12{v rSub { size 8{x} } =v rSub { size 8{0} } "cos"θ rSub { size 8{0} } = \( "25" "." 0" m/s" \) \( "cos""35" rSup { size 8{ circ } } \) ="20" "." 5" m/s."} {}

The final vertical velocity is given by the following equation:

v y = v 0 y gt, size 12{v rSub { size 8{y} } =v rSub { size 8{0y} } - ital "gt,"} {}

where v 0y size 12{v rSub { size 8{0y} } } {} was found in part (a) to be 14 . 3 m/s size 12{"14" "." "3 m/s"} {} . Thus,

v y = 14 . 3 m/s ( 9 . 80 m/s 2 ) ( 3 . 96 s ) size 12{v rSub { size 8{y} } ="14" "." 3" m/s" - \( 9 "." "80"" m/s" rSup { size 8{2} } \) \( 3 "." "96"" s" \) } {}

so that

v y = 24 . 5 m/s. size 12{v rSub { size 8{y} } = - "24" "." 5" m/s."} {}

To find the magnitude of the final velocity v size 12{v} {} we combine its perpendicular components, using the following equation:

v = v x 2 + v y 2 = ( 20 . 5 m/s ) 2 + ( 24 . 5 m/s ) 2 , size 12{v= sqrt {v rSub { size 8{x} } rSup { size 8{2} } +v rSub { size 8{y} } rSup { size 8{2} } } = sqrt { \( "20" "." 5" m/s" \) rSup { size 8{2} } + \( - "24" "." 5" m/s" \) rSup { size 8{2} } } ","} {}

which gives

v = 31 . 9 m/s. size 12{v="31" "." 9" m/s."} {}

The direction θ v size 12{θ rSub { size 8{v} } } {} is found from the equation:

θ v = tan 1 ( v y / v x ) size 12{θ rSub { size 8{v} } ="tan" rSup { size 8{ - 1} } \( v rSub { size 8{y} } /v rSub { size 8{x} } \) } {}

so that

θ v = tan 1 ( 24 . 5 / 20 . 5 ) = tan 1 ( 1 . 19 ) . size 12{θ rSub { size 8{v} } ="tan" rSup { size 8{ - 1} } \( - "24" "." 5/"20" "." 5 \) ="tan" rSup { size 8{ - 1} } \( - 1 "." "19" \) "."} {}

Thus,

θ v = 50 . 1 º . size 12{θ rSub { size 8{v} } = - "50" "." 1 rSup { size 12{ circ } "."} } {}

Discussion for (b)

The negative angle means that the velocity is 50 . size 12{"50" "." 1°} {} below the horizontal. This result is consistent with the fact that the final vertical velocity is negative and hence downward—as you would expect because the final altitude is 20.0 m lower than the initial altitude. (See [link] .)

One of the most important things illustrated by projectile motion is that vertical and horizontal motions are independent of each other. Galileo was the first person to fully comprehend this characteristic. He used it to predict the range of a projectile. On level ground, we define range    to be the horizontal distance R size 12{R} {} traveled by a projectile. Galileo and many others were interested in the range of projectiles primarily for military purposes—such as aiming cannons. However, investigating the range of projectiles can shed light on other interesting phenomena, such as the orbits of satellites around the Earth. Let us consider projectile range further.

Part a of the figure shows three different trajectories of projectiles on level ground. In each case the projectiles makes an angle of forty five degrees with the horizontal axis. The first projectile of initial velocity thirty meters per second travels a horizontal distance of R equal to ninety one point eight meters. The second projectile of initial velocity forty meters per second travels a horizontal distance of R equal to one hundred sixty three meters. The third projectile of initial velocity fifty meters per second travels a horizontal distance of R equal to two hundred fifty five meters.
Trajectories of projectiles on level ground. (a) The greater the initial speed v 0 size 12{v rSub { size 8{0} } } {} , the greater the range for a given initial angle. (b) The effect of initial angle θ 0 size 12{θ rSub { size 8{0} } } {} on the range of a projectile with a given initial speed. Note that the range is the same for 15º size 12{"15"°} {} and 75º size 12{"75°"} {} , although the maximum heights of those paths are different.

How does the initial velocity of a projectile affect its range? Obviously, the greater the initial speed v 0 size 12{v rSub { size 8{0} } } {} , the greater the range, as shown in [link] (a). The initial angle θ 0 size 12{θ rSub { size 8{0} } } {} also has a dramatic effect on the range, as illustrated in [link] (b). For a fixed initial speed, such as might be produced by a cannon, the maximum range is obtained with θ 0 = 45º size 12{θ rSub { size 8{0} }  = "45º"} {} . This is true only for conditions neglecting air resistance. If air resistance is considered, the maximum angle is approximately 38º size 12{"38º"} {} . Interestingly, for every initial angle except 45º size 12{"45º"} {} , there are two angles that give the same range—the sum of those angles is 90º size 12{"90º"} {} . The range also depends on the value of the acceleration of gravity g size 12{g} {} . The lunar astronaut Alan Shepherd was able to drive a golf ball a great distance on the Moon because gravity is weaker there. The range R size 12{R} {} of a projectile on level ground for which air resistance is negligible is given by

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics 110 at une. OpenStax CNX. Aug 29, 2013 Download for free at http://legacy.cnx.org/content/col11566/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 110 at une' conversation and receive update notifications?

Ask