<< Chapter < Page Chapter >> Page >
A simple diagram of an increasing concave down curve C in vector field F, with no coordinate plane. Towards the top of the curve, the normal n is drawn perpendicular to the curve C. Another arrow F is drawn sharing n’s endpoint. This flux points up and to the right at about a 90-degree angle to n. The arrows in the vector field to the left of n are drawn pointing straight up. The arrows after n point in the same direction as the flux.
The flux of vector field F across curve C is computed by an integral similar to a vector line integral.

We now give a formula for calculating the flux across a curve. This formula is analogous to the formula used to calculate a vector line integral (see [link] ).

Calculating flux across a curve

Let F be a vector field and let C be a smooth curve with parameterization r ( t ) = x ( t ) , y ( t ) , a t b . Let n ( t ) = y ( t ) , x ( t ) . The flux of F across C is

C F · N d s = a b F ( r ( t ) ) · n ( t ) d t

Proof

The proof of [link] is similar to the proof of [link] . Before deriving the formula, note that n ( t ) = y ( t ) , x ( t ) = ( y ( t ) ) 2 + ( x ( t ) ) 2 = r ( t ) . Therefore,

C F · N d s = C F · n ( t ) n ( t ) d s = a b F · n ( t ) n ( t ) r ( t ) d t = a b F ( r ( t ) ) · n ( t ) d t .

Flux across a curve

Calculate the flux of F = 2 x , 2 y across a unit circle oriented counterclockwise ( [link] ).

A unit circle in a vector field in two dimensions. The arrows point away from the origin in a radial pattern. Shorter vectors are near the origin, and longer ones are further away. A unit circle is drawn around the origin to fit the pattern, and arrowheads are drawn on the circle in a counterclockwise manner.
A unit circle in vector field F = 2 x , 2 y .

To compute the flux, we first need a parameterization of the unit circle. We can use the standard parameterization r ( t ) = cos t , sin t , 0 t 2 π . The normal vector to a unit circle is cos t , sin t . Therefore, the flux is

C F · N d s = 0 2 π 2 cos t , 2 sin t · cos t , sin t d t = 0 2 π ( 2 cos 2 t + 2 sin 2 t ) d t = 2 0 2 π ( cos 2 t + sin 2 t ) d t = 2 0 2 π d t = 4 π .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Calculate the flux of F = x + y , 2 y across the line segment from ( 0 , 0 ) to ( 2 , 3 ) , where the curve is oriented from left to right.

3/2

Got questions? Get instant answers now!

Let F ( x , y ) = P ( x , y ) , Q ( x , y ) be a two-dimensional vector field. Recall that integral C F · T d s is sometimes written as C P d x + Q d y . Analogously, flux C F · N d s is sometimes written in the notation C Q d x + P d y , because the unit normal vector N is perpendicular to the unit tangent T . Rotating the vector d r = d x , d y by 90° results in vector d y , d x . Therefore, the line integral in [link] can be written as C −2 y d x + 2 x d y .

Now that we have defined flux, we can turn our attention to circulation. The line integral of vector field F along an oriented closed curve is called the circulation    of F along C . Circulation line integrals have their own notation: C F · T d s . The circle on the integral symbol denotes that C is “circular” in that it has no endpoints. [link] shows a calculation of circulation.

To see where the term circulation comes from and what it measures, let v represent the velocity field of a fluid and let C be an oriented closed curve. At a particular point P , the closer the direction of v ( P ) is to the direction of T ( P ), the larger the value of the dot product v ( P ) · T ( P ) . The maximum value of v ( P ) · T ( P ) occurs when the two vectors are pointing in the exact same direction; the minimum value of v ( P ) · T ( P ) occurs when the two vectors are pointing in opposite directions. Thus, the value of the circulation C v · T d s measures the tendency of the fluid to move in the direction of C .

Calculating circulation

Let F = y , x be the vector field from [link] and let C represent the unit circle oriented counterclockwise. Calculate the circulation of F along C .

We use the standard parameterization of the unit circle: r ( t ) = cos t , sin t , 0 t 2 π . Then, F ( r ( t ) ) = sin t , cos t and r ( t ) = sin t , cos t . Therefore, the circulation of F along C is

C F · T d s = 0 2 π sin t , cos t · sin t , cos t d t = 0 2 π ( sin 2 t + cos 2 t ) d t = 0 2 π d t = 2 π .

Notice that the circulation is positive. The reason for this is that the orientation of C “flows” with the direction of F . At any point along the circle, the tangent vector and the vector from F form an angle of less than 90°, and therefore the corresponding dot product is positive.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 3. OpenStax CNX. Feb 05, 2016 Download for free at http://legacy.cnx.org/content/col11966/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 3' conversation and receive update notifications?

Ask