<< Chapter < Page Chapter >> Page >
The DFT can be reduced from exponential time with the Fast Fourier Transform algorithm.

One wonders if the DFT can be computed faster: Does another computational procedure -- an algorithm -- exist that can compute the same quantity, but more efficiently. Wecould seek methods that reduce the constant of proportionality, but do not change the DFT's complexity O N 2 .Here, we have something more dramatic in mind: Can the computations be restructuredso that a smaller complexity results?

In 1965, IBM researcher Jim Cooley and Princeton faculty member John Tukey developed what is now known as the Fast FourierTransform (FFT). It is an algorithm for computing that DFT that has order O N N for certain length inputs . Now when the length of data doubles, the spectral computational time will not quadruple aswith the DFT algorithm; instead, it approximately doubles. Later research showed that no algorithm for computing the DFT could have asmaller complexity than the FFT. Surprisingly, historical work has shown that Gauss in the early nineteenth century developed the samealgorithm, but did not publish it! After the FFT's rediscovery, not only was the computation of a signal's spectrum greatlyspeeded, but also the added feature of algorithm meant that computations had flexibility not available to analog implementations.

Before developing the FFT, let's try to appreciate the algorithm's impact. Suppose a short-length transform takes1 ms. We want to calculate a transform of a signal that is 10 times longer. Compare how much longer a straightforwardimplementation of the DFT would take in comparison to an FFT, both of which compute exactly the same quantity.

If a DFT required 1ms to compute, and signal having ten times the duration would require 100ms to compute. Using theFFT, a 1ms computing time would increase by a factor of about 10 2 logbase --> 10 33 , a factor of 3 less than the DFT would have needed.

Got questions? Get instant answers now!

To derive the FFT, we assume that the signal's duration is a power of two: N 2 L . Consider what happens to the even-numbered and odd-numberedelements of the sequence in the DFT calculation.

S k s 0 s 2 2 2 k N s N 2 2 N 2 k N s 1 2 k N s 3 2 2 1 k N s N 1 2 N 2 1 k N [ s 0 s 2 2 k N 2 s N 2 2 N 2 1 k N 2 ] [ s 1 s 3 2 k N 2 s N 1 2 N 2 1 k N 2 ] 2 k N

Each term in square brackets has the form of a N 2 -length DFT. The first one is a DFT of the even-numbered elements, and the second of the odd-numberedelements. The first DFT is combined with the second multiplied by the complex exponential 2 k N . The half-length transforms are each evaluated at frequency indices k 0 , , N 1 . Normally, the number of frequency indices in a DFT calculationrange between zero and the transform length minus one. The computational advantage of the FFT comes from recognizing the periodic nature of the discrete Fouriertransform. The FFT simply reuses the computations made in the half-length transforms and combines them through additions andthe multiplication by 2 k N , which is not periodic over N 2 . [link] illustrates this decomposition. As it stands, we now compute two length- N 2 transforms (complexity 2 O N 2 4 ), multiply one of them by the complex exponential (complexity O N ), and add the results (complexity O N ). At this point, the total complexity is still dominated by the half-length DFT calculations, but theproportionality coefficient has been reduced.

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask