<< Chapter < Page Chapter >> Page >
Analog-to-digital conversion.

The Sampling Theorem says that if we sample a bandlimitedsignal s t fast enough, it can be recovered without error from its samples s n T s , n -1 0 1 . Sampling is only the first phase of acquiring data into acomputer: Computational processing further requires that the samples be quantized : analog values are converted into digital form. In short, we will have performed analog-to-digital (A/D) conversion .

A three-bit A/D converter assigns voltage in the range -1 1 to one of eight integers between 0 and 7. For example, allinputs having values lying between 0.5 and 0.75 are assigned the integer value six and, upon conversion back to an analogvalue, they all become 0.625. The width of a single quantization interval Δ equals 2 2 B . The bottom panel shows a signal going through theanalog-to-digital converter, where B is the number of bits used in the A/D conversion process (3 inthe case depicted here). First it is sampled, then amplitude-quantized to three bits. Note how the sampledsignal waveform becomes distorted after amplitude quantization. For example the two signal values between 0.5and 0.75 become 0.625. This distortion is irreversible; it can be reduced (but not eliminated) by using more bits inthe A/D converter.

A phenomenon reminiscent of the errors incurred in representing numbers on a computer prevents signal amplitudesfrom being converted with no error into a binary number representation. In analog-to-digital conversion, the signal isassumed to lie within a predefined range. Assuming we can scale the signal without affecting the information itexpresses, we'll define this range to be 1 1 . Furthermore, the A/D converter assigns amplitude values inthis range to a set of integers. A B -bit converter produces one of the integers 0 1 2 B 1 for each sampled input. [link] shows how a three-bit A/D converter assigns input values tothe integers.We define a quantization interval to be the range of values assigned to the same integer. Thus, for our examplethree-bit A/D converter, the quantization interval Δ is 0.25 ; in general, it is 2 2 B .

Recalling the plot of average daily highs in this frequency domain problem , why is this plot so jagged? Interpret this effect interms of analog-to-digital conversion.

The plotted temperatures were quantized to the nearest degree. Thus, the high temperature's amplitude wasquantized as a form of A/D conversion.

Got questions? Get instant answers now!

Because values lying anywhere within a quantization interval are assigned the same value for computer processing, the original amplitude value cannot be recovered without error . Typically, the D/A converter, the device that converts integers to amplitudes, assigns anamplitude equal to the value lying halfway in the quantization interval. The integer 6 would be assigned to the amplitude0.625 in this scheme. The error introduced by converting a signal fromanalog to digital form by sampling and amplitude quantization then back again would be half the quantizationinterval for each amplitude value. Thus, the so-called A/D error equals half the width of a quantization interval: 1 2 B . As we have fixed the input-amplitude range, the more bitsavailable in the A/D converter, the smaller the quantization error.

To analyze the amplitude quantization error more deeply, we need to compute the signal-to-noise ratio, which equals the ratio of the signal power and the quantizationerror power. Assuming the signal is a sinusoid, the signal power is the square of the rms amplitude: power s 1 2 2 1 2 . The illustration details a single quantization interval.

A single quantization interval is shown, along with atypical signal's value before amplitude quantization s n T s and after Q s n T s . ε denotes the error thus incurred.
Its width is Δ and the quantization error is denoted by ε . To find the power in the quantization error, we note that no matter into whichquantization interval the signal's value falls, the error will have the same characteristics. To calculate the rms value, wemust square the error and average it over the interval.
rms ε 1 Δ ε Δ 2 Δ 2 ε 2 Δ 2 12 1 2
Since the quantization interval width for a B -bit converter equals 2 2 B 2 B 1 , we find that the signal-to-noise ratio for theanalog-to-digital conversion process equals
SNR 1 2 2 2 B 1 12 3 2 2 2 B 6 B 10 10 logbase --> 1.5 dB
Thus, every bit increase in the A/D converter yields a 6 dB increase in the signal-to-noise ratio.The constant term 10 10 logbase --> 1.5 equals 1.76.

This derivation assumed the signal's amplitude lay in the range -1 1 . What would the amplitude quantization signal-to-noiseratio be if it lay in the range A A ?

The signal-to-noise ratio does not depend on the signal amplitude. With an A/D range of A A , the quantization interval Δ 2 A 2 B and the signal's rms value (again assuming it is a sinusoid) is A 2 .

Got questions? Get instant answers now!

How many bits would be required in the A/D converter to ensure that the maximum amplitude quantization error wasless than 60 db smaller than the signal's peak value?

Solving 2 B .001 results in B 10 bits.

Got questions? Get instant answers now!

Music on a CD is stored to 16-bit accuracy. To what signal-to-noise ratio does this correspond?

A 16-bit A/D converter yields a SNR of 6 16 10 10 logbase --> 1.5 97.8 dB.

Got questions? Get instant answers now!

Once we have acquired signals with an A/D converter, we canprocess them using digital hardware or software. It can be shown that if the computer processing is linear, the result ofsampling, computer processing, and unsampling is equivalent to some analog linear system. Why go to all the bother if thesame function can be accomplished using analog techniques? Knowing when digital processing excels and when it does not isan important issue.

Questions & Answers

what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
What are the treatment for autism?
Magret Reply
hello. autism is a umbrella term. autistic kids have different disorder overlapping. for example. a kid may show symptoms of ADHD and also learning disabilities. before treatment please make sure the kid doesn't have physical disabilities like hearing..vision..speech problem. sometimes these
Jharna
continue.. sometimes due to these physical problems..the diagnosis may be misdiagnosed. treatment for autism. well it depends on the severity. since autistic kids have problems in communicating and adopting to the environment.. it's best to expose the child in situations where the child
Jharna
child interact with other kids under doc supervision. play therapy. speech therapy. Engaging in different activities that activate most parts of the brain.. like drawing..painting. matching color board game. string and beads game. the more you interact with the child the more effective
Jharna
results you'll get.. please consult a therapist to know what suits best on your child. and last as a parent. I know sometimes it's overwhelming to guide a special kid. but trust the process and be strong and patient as a parent.
Jharna
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask