<< Chapter < Page Chapter >> Page >
A brief introduction on how to filter digital signals

Because of the Sampling Theorem , we can process, in particular filter, analog signals "with a computer" by constructing the system shown in [link] . To use this system, we are assuming that the input signal has a lowpass spectrum andcan be bandlimited without affecting important signal aspects. Bandpass signals can also be filtered digitally, but require amore complicated system. Highpass signals cannot be filtered digitally. Note that the input and output filters must be analogfilters; trying to operate without them can lead to potentially very inaccurate digitization.

To process an analog signal digitally, the signal x t must be filtered with an anti-aliasing filter (to ensure a bandlimited signal) before A/D conversion. This lowpassfilter (LPF) has a cutoff frequency of W Hz, which determines allowable sampling intervals T s . The greater the number of bits in the amplitude quantization portion Q · of the A/D converter, the greater the accuracy of the entire system. Theresulting digital signal x n can now be filtered in the time-domain with a difference equation or in the frequency domain with Fouriertransforms. The resulting output y n then drives a D/A converter and a second anti-aliasing filter(having the same bandwidth as the first one).

Another implicit assumption is that the digital filter can operate in real time : The computer and the filtering algorithm must be sufficiently fast so that outputs are computedfaster than input values arrive. The sampling interval, which is determined by the analog signal's bandwidth, thus determines how longour program has to compute each output y n . The computational complexity for calculating each output with a difference equation is O p q . Frequency domain implementation of the filter is also possible. The idea begins by computing the Fouriertransform of a length- N portion of the input x n , multiplying it by the filter's transfer function, and computing the inverse transform of the result. This approachseems overly complex and potentially inefficient. Detailing the complexity, however, we have O N N for the two transforms (computed using the FFT algorithm) and O N for the multiplication by the transfer function, which makes the total complexity O N N for N input values . A frequency domain implementation thus requires O N computational complexity for each output value. The complexities of time-domain and frequency-domain implementations depend ondifferent aspects of the filtering: The time-domain implementation depends on the combined orders of the filterwhile the frequency-domain implementation depends on the logarithm of the Fourier transform's length.

It could well be that in some problems the time-domain version is more efficient (more easily satisfies the real timerequirement), while in others the frequency domain approach isfaster. In the latter situations, it is the FFT algorithm for computing the Fourier transforms that enables thesuperiority of frequency-domain implementations. Because complexity considerations only express how algorithm running-time increaseswith system parameter choices, we need to detail both implementations to determine which will be more suitable for anygiven filtering problem. Filtering with a difference equation is straightforward, and the number of computations that must bemade for each output value is 2 p q .

Derive this value for the number of computations for the general difference equation .

We have p q 1 multiplications and p q 1 additions. Thus, the total number of arithmetic operations equals 2 p q .

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask