<< Chapter < Page Chapter >> Page >
This is a general overview of how to solve simple electrical engineering problems.

A periodic signal, such as the half-wave rectified sinusoid,consists of a sum of elemental sinusoids. A plot of the Fourier coefficients as a function of the frequency index, such as shownin [link] , displays the signal's spectrum . The word "spectrum" implies that the independent variable, here k , corresponds somehow to frequency. Each coefficient is directly related to a sinusoidhaving a frequency of k T . Thus, if we half-wave rectified a 1 kHz sinusoid, k 1 corresponds to 1 kHz, k 2 to 2 kHz, etc.

Fourier series spectrum of a half-wave rectified sine wave

The Fourier series spectrum of a half-wave rectified sinusoid is shown. The index indicates themultiple of the fundamental frequency at which the signal has energy.

A subtle, but very important, aspect of the Fourier spectrum isits uniqueness : You can unambiguously find the spectrum from the signal( decomposition ) and the signal from the spectrum( composition ). Thus, any aspect of the signal can be found from the spectrumand vice versa. A signal's frequency domain expression is its spectrum . A periodic signal can be defined either in the time domain (as a function) or in thefrequency domain (as a spectrum).

A fundamental aspect of solving electrical engineering problems is whether the time or frequency domain provides themost understanding of a signal's properties and the simplest way of manipulatingit. The uniqueness property says that either domain can provide the right answer.As a simple example, suppose we want to know the (periodic) signal's maximum value. Clearly the time domain provides theanswer directly. To use a frequency domain approach would require us to find the spectrum, form the signal from thespectrum and calculate the maximum; we're back in the time domain!

Another feature of a signal is its average power . A signal's instantaneous power is defined to be its square. Theaverage power is the average of the instantaneous power over some time interval. For a periodic signal, the natural timeinterval is clearly its period; for nonperiodic signals, a better choice would be entire time or time from onset. For aperiodic signal, the average power is the square of its root-mean-squared (rms) value. We define the rms value of a periodic signal to be

rms s 1 T t 0 T s t 2
and thus its average power is
power s rms s 2 1 T t 0 T s t 2

What is the rms value of the half-wave rectified sinusoid?

The rms value of a sinusoid equals its amplitude divided by 2 2 . As a half-wave rectified sine wave is zero during half ofthe period, its rms value is A 2 since the integral of the squared half-wave rectified sine wave equals half that of a squared sinusoid.

Got questions? Get instant answers now!

To find the average power in the frequency domain, we need to substitute the spectral representation of the signal into thisexpression. power s 1 T t 0 T a 0 k 1 a k 2 k t T k 1 b k 2 k t T 2 The square inside the integral will contain all possible pairwise products. However, the orthogonality properties say that most of these crossterms integrate to zero. Thesurvivors leave a rather simple expression for the power we seek.

power s a 0 2 1 2 k 1 a k 2 b k 2

Power spectrum of a half-wave rectified sinusoid

Power spectrum of a half-wave rectified sinusoid.

It could well be that computing this sum is easier than integrating the signal's square. Furthermore, the contributionof each term in the Fourier series toward representing the signal can be measured by its contribution to the signal'saverage power. Thus, the power contained in a signal at its k th harmonic is a k 2 b k 2 2 . The power spectrum , P s k , such as shown in [link] , plots each harmonic's contribution to the total power.

In high-end audio, deviation of a sine wave from theideal is measured by the total harmonic distortion , which equals the total power in the harmonics higher than thefirst compared to power in the fundamental. Find an expression for the total harmonic distortion for anyperiodic signal. Is this calculation most easily performed in the time or frequency domain?

Total harmonic distortion equals k 2 a k 2 b k 2 a 1 2 b 1 2 . Clearly, this quantity is most easily computed in thefrequency domain. However, the numerator equals the square of the signal's rms value minus the power in the average andthe power in the first harmonic.

Got questions? Get instant answers now!

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask