<< Chapter < Page Chapter >> Page >
Power dissipation in resistor circuits.

We can find voltages and currents in simple circuits containing resistors and voltage or current sources.We should examine whether these circuits variables obey the Conservation of Power principle:since a circuit is a closed system, it should not dissipate or create energy.For the moment, our approach is to investigate first a resistor circuit's power consumption/creation. Later, we will prove that because of KVL and KCL all circuits conserve power.

As defined on [link] , the instantaneous power consumed/created by every circuit element equals the product of itsvoltage and current. The total power consumed/created by a circuit equals the sum of eachelement's power. P k k v k i k Recall that each element's current and voltage must obey the convention that positive current is defined to enter the positive-voltage terminal.With this convention, a positive value of v k i k corresponds to consumed power, a negative value to created power. Because the total power in a circuit must be zero( P 0 ), some circuit elements must create power while others consume it.

Consider the simple series circuit should in [link] . In performing our calculations, we defined the current i out to flow through the positive-voltage terminals of both resistors and found it to equal i out v in R 1 R 2 . The voltage across the resistor R 2 is the output voltage and we found it to equal v out R 2 R 1 R 2 v in . Consequently, calculating the power for this resistor yields P 2 R 2 R 1 R 2 2 v in 2 Consequently, this resistor dissipates power because P 2 is positive. This result should not be surprising since we showed that the power consumedby any resistor equals either of the following.

v 2 R   or   i 2 R
Since resistors are positive-valued, resistors always dissipate power . But where does a resistor's power go?By Conservation of Power, the dissipated power must be absorbed somewhere. The answer is not directly predicted by circuit theory, but is by physics.Current flowing through a resistor makes it hot; its power is dissipated by heat.
A physical wire has a resistance and hence dissipates power (it gets warm just like a resistor in a circuit).In fact, the resistance of a wire of length L and cross-sectional area A is given by R ρ L A The quantity ρ is known as the resistivity and presents the resistance of a unit-length, unit cross-sectional area material constituting the wire.Resistivity has units of ohm-meters. Most materials have a positive value for ρ , which means the longer the wire, the greater the resistance and thus thepower dissipated. The thicker the wire, the smaller the resistance.Superconductors have zero resistivity and hence do not dissipate power. If a room-temperature superconductor could be found, electric power could besent through power lines without loss!

Calculate the power consumed/created by the resistor R 1 in our simple circuit example.

The power consumed by the resistor R 1 can be expressed as v in v out i out R 1 R 1 R 2 2 v in 2

Got questions? Get instant answers now!

We conclude that both resistors in our example circuit consume power, which points to the voltage source as the producer of power.The current flowing into the source's positive terminal is i out . Consequently, the power calculation for the source yields v in i out 1 R 1 R 2 v in 2 We conclude that the source provides the power consumed by the resistors, no more, no less.

Confirm that the source produces exactly the total power consumed by both resistors.

1 R 1 R 2 v in 2 R 1 R 1 R 2 2 v in 2 R 2 R 1 R 2 2 v in 2

Got questions? Get instant answers now!

This result is quite general: sources produce power and the circuit elements, especially resistors,consume it. But where do sources get their power?Again, circuit theory does not model how sources are constructed, but the theory decrees that all sources must be provided energy to work.

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask