<< Chapter < Page Chapter >> Page >

The reason 235 U size 12{ {} rSup { size 8{"235"} } U} {} and 239 Pu size 12{ {} rSup { size 8{"239"} } ital "Pu"} {} are easier to fission than 238 U size 12{ {} rSup { size 8{"238"} } U} {} is that the nuclear force is more attractive for an even number of neutrons in a nucleus than for an odd number. Consider that 92 235 U 143 size 12{"" lSub { size 8{"92"} } lSup { size 8{"235"} } U rSub { size 8{"143"} } } {} has 143 neutrons, and 94 239 P 145 size 12{"" lSub { size 8{"94"} } lSup { size 8{"239"} } P rSub { size 8{"145"} } } {} has 145 neutrons, whereas 92 238 U 146 size 12{"" lSub { size 8{"92"} } lSup { size 8{"238"} } U rSub { size 8{"146"} } } {} has 146. When a neutron encounters a nucleus with an odd number of neutrons, the nuclear force is more attractive, because the additional neutron will make the number even. About 2-MeV more energy is deposited in the resulting nucleus than would be the case if the number of neutrons was already even. This extra energy produces greater deformation, making fission more likely. Thus, 235 U size 12{ {} rSup { size 8{"235"} } U} {} and 239 Pu size 12{ {} rSup { size 8{"239"} } ital "Pu"} {} are superior fission fuels. The isotope 235 U size 12{ {} rSup { size 8{"235"} } U} {} is only 0.72 % of natural uranium, while 238 U size 12{ {} rSup { size 8{"238"} } U} {} is 99.27%, and 239 Pu size 12{ {} rSup { size 8{"239"} } ital "Pu"} {} does not exist in nature. Australia has the largest deposits of uranium in the world, standing at 28% of the total. This is followed by Kazakhstan and Canada. The US has only 3% of global reserves.

Most fission reactors utilize 235 U size 12{ {} rSup { size 8{"235"} } U} {} , which is separated from 238 U size 12{ {} rSup { size 8{"238"} } U} {} at some expense. This is called enrichment. The most common separation method is gaseous diffusion of uranium hexafluoride ( UF 6 size 12{"UF" rSub { size 8{6} } } {} ) through membranes. Since 235 U size 12{ {} rSup { size 8{"235"} } U} {} has less mass than 238 U size 12{ {} rSup { size 8{"238"} } U} {} , its UF 6 size 12{"UF" rSub { size 8{6} } } {} molecules have higher average velocity at the same temperature and diffuse faster. Another interesting characteristic of 235 U size 12{ {} rSup { size 8{"235"} } U} {} is that it preferentially absorbs very slow moving neutrons (with energies a fraction of an eV), whereas fission reactions produce fast neutrons with energies in the order of an MeV. To make a self-sustained fission reactor with 235 U size 12{ {} rSup { size 8{"235"} } U} {} , it is thus necessary to slow down (“thermalize”) the neutrons. Water is very effective, since neutrons collide with protons in water molecules and lose energy. [link] shows a schematic of a reactor design, called the pressurized water reactor.

The figure shows a close-shielded vessel containing fuel rod and control rods along with a moderator in one chamber from which heat is taken out to the other chamber to change water to steam. Next, the steam is taken out from the vessel to run a turbine, and then it is condensed and sent back to the closed vessel.
A pressurized water reactor is cleverly designed to control the fission of large amounts of 235 U size 12{ {} rSup { size 8{"235"} } U} {} , while using the heat produced in the fission reaction to create steam for generating electrical energy. Control rods adjust neutron flux so that criticality is obtained, but not exceeded. In case the reactor overheats and boils the water away, the chain reaction terminates, because water is needed to thermalize the neutrons. This inherent safety feature can be overwhelmed in extreme circumstances.

Control rods containing nuclides that very strongly absorb neutrons are used to adjust neutron flux. To produce large power, reactors contain hundreds to thousands of critical masses, and the chain reaction easily becomes self-sustaining, a condition called criticality    . Neutron flux should be carefully regulated to avoid an exponential increase in fissions, a condition called supercriticality    . Control rods help prevent overheating, perhaps even a meltdown or explosive disassembly. The water that is used to thermalize neutrons, necessary to get them to induce fission in 235 U size 12{ {} rSup { size 8{"235"} } U} {} , and achieve criticality, provides a negative feedback for temperature increases. In case the reactor overheats and boils the water to steam or is breached, the absence of water kills the chain reaction. Considerable heat, however, can still be generated by the reactor’s radioactive fission products. Other safety features, thus, need to be incorporated in the event of a loss of coolant accident, including auxiliary cooling water and pumps.

Questions & Answers

What is inflation
Bright Reply
a general and ongoing rise in the level of prices in an economy
AI-Robot
What are the factors that affect demand for a commodity
Florence Reply
price
Kenu
differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concepts of physics. OpenStax CNX. Aug 25, 2015 Download for free at https://legacy.cnx.org/content/col11738/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of physics' conversation and receive update notifications?

Ask