<< Chapter < Page Chapter >> Page >
Details the Continuous-Time Fourier Transform.

Introduction

In this module, we will derive an expansion for any arbitrary continuous-time function, and in doing so, derive the Continuous Time Fourier Transform (CTFT).

Since complex exponentials are eigenfunctions of linear time-invariant (LTI) systems , calculating the output of an LTI system given s t as an input amounts to simple multiplication, where H s is the eigenvalue corresponding to s. As shown in the figure, a simple exponential input would yield the output

y t H s s t

Using this and the fact that is linear, calculating y t for combinations of complex exponentials is also straightforward.

c 1 s 1 t c 2 s 2 t c 1 H s 1 s 1 t c 2 H s 2 s 2 t n c n s n t n c n H s n s n t

The action of H on an input such as those in the two equations above is easy to explain. independently scales each exponential component s n t by a different complex number H s n . As such, if we can write a function f t as a combination of complex exponentials it allows us to easily calculate the output of a system.

Now, we will look to use the power of complex exponentials to see how we may represent arbitrary signals in terms of a set of simpler functions bysuperposition of a number of complex exponentials. Below we will present the Continuous-Time Fourier Transform (CTFT), commonly referred to as just the Fourier Transform (FT). Because theCTFT deals with nonperiodic signals, we must find a way to include all real frequencies in thegeneral equations.For the CTFT we simply utilize integration over real numbers rather than summation over integers in order to express the aperiodic signals.

Fourier transform synthesis

Joseph Fourier demonstrated that an arbitrary s t can be written as a linear combination of harmonic complex sinusoids

s t n c n j ω 0 n t
where ω 0 2 T is the fundamental frequency. For almost all s t of practical interest, there exists c n to make [link] true. If s t is finite energy ( s t L 0 T 2 ), then the equality in [link] holds in the sense of energy convergence; if s t is continuous, then [link] holds pointwise. Also, if s t meets some mild conditions (the Dirichlet conditions), then [link] holds pointwise everywhere except at points of discontinuity.

The c n - called the Fourier coefficients - tell us "how much" of the sinusoid j ω 0 n t is in s t . The formula shows s t as a sum of complex exponentials, each of which is easily processed by an LTI system (since it is an eigenfunction of every LTI system). Mathematically, it tells us that the set ofcomplex exponentials n n j ω 0 n t form a basis for the space of T-periodic continuous time functions.

Equations

Now, in order to take this useful tool and apply it to arbitrary non-periodic signals, we will have to delve deeper into the use of the superposition principle. Let s T ( t ) be a periodic signal having period T . We want to consider what happens to this signal's spectrum as the period goes to infinity. We denote the spectrum for any assumed value of the period by c n ( T ) . We calculate the spectrum according to the Fourier formula for a periodic signal, known as the Fourier Series (for more on this derivation, see the section on Fourier Series .)

c n = 1 T 0 T s ( t ) exp ( - ı ω 0 t ) d t
where ω 0 = T and where we have used a symmetric placement of the integration interval about the origin for subsequent derivational convenience. We vary the frequency index n proportionally as we increase the period. Define making the corresponding Fourier Series
s T ( t ) = - f ( t ) exp ( ı ω 0 t ) 1 T )
As the period increases, the spectral lines become closer together, becoming a continuum. Therefore,
lim T s T ( t ) s ( t ) = - S ( f ) exp ( ı ω 0 t ) d f
with
S ( f ) = - s ( t ) exp ( - ı ω 0 t ) d t

Continuous-time fourier transform

Ω t f t Ω t

Inverse ctft

f t 1 2 Ω Ω Ω t

It is not uncommon to see the above formula written slightly different. One of themost common differences is the way that the exponential is written. The above equations use the radialfrequency variable Ω in the exponential, where Ω 2 f , but it is also common to include the more explicit expression, 2 f t , in the exponential. Click here for an overview of the notation used in Connexion's DSP modules.

We know from Euler's formula that cos ( ω t ) + sin ( ω t ) = 1 - j 2 e j ω t + 1 + j 2 e - j ω t .

Got questions? Get instant answers now!

Ctft definition demonstration

CTFTDemo
Interact (when online) with a Mathematica CDF demonstrating Continuous Time Fourier Transform. To Download, right-click and save as .cdf.

Example problems

Find the Fourier Transform (CTFT) of the function

f t α t t 0 0

In order to calculate the Fourier transform, all we need to use is [link] , complex exponentials , and basic calculus.

Ω t f t Ω t t 0 α t Ω t t 0 t α Ω 0 -1 α Ω
Ω 1 α Ω

Got questions? Get instant answers now!

Find the inverse Fourier transform of the ideal lowpass filter defined by

X Ω 1 Ω M 0

Here we will use [link] to find the inverse FT given that t 0 .

x t 1 2 Ω M M Ω t Ω w 1 2 Ω t 1 t M t
x t M sinc M t

Got questions? Get instant answers now!

Fourier transform summary

Because complex exponentials are eigenfunctions of LTI systems, it is often useful to represent signals using a set of complex exponentials as a basis. The continuous time Fourier series synthesis formula expresses a continuous time, periodic function as the sum of continuous time, discrete frequency complex exponentials.

f t n c n j ω 0 n t
The continuous time Fourier series analysis formula gives the coefficients of the Fourier series expansion.
c n 1 T t T 0 f t j ω 0 n t
In both of these equations ω 0 2 T is the fundamental frequency.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of signal processing. OpenStax CNX. Nov 26, 2012 Download for free at http://cnx.org/content/col10360/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of signal processing' conversation and receive update notifications?

Ask