<< Chapter < Page Chapter >> Page >

Let’s stop to think about why this is true at 1 atm pressure. To do so, we need to remember how we observed the boiling point. We applied a pressure using a piston which trapped a liquid in a cylinder. When we elevated the temperature, we observed a phase transition at one temperature which we called the boiling point. At that point, the vapor became stable. For this to be true, the pressure created by the vapor (which is of course the vapor pressure) must at least be equal to the pressure applied externally to the piston. If the vapor pressure is less than the applied pressure, the vapor cannot resist the applied pressure, the piston moves in, and all of the vapor condenses into the liquid. Therefore, for the liquid to boil, the temperature must be high enough for the vapor pressure to equal the applied pressure. Only at this temperature or above will the rate of evaporation be great enough to offset the rate of condensation created by the externally applied pressure.

To find the boiling point temperature at 1 atm pressure, we need to find the temperature at which the vapor pressure is 1 atm. To do so, we find the point on the graph where the vapor pressure is 1 atm and read off the corresponding temperature, which must be the boiling point. Of course, this will work at any given pressure. We just read off of Figure 1 the temperature at which the vapor pressure equals the applied pressure, and that will be the temperature at which the liquid boils at that pressure. This means that Figure. 1 gives us both the vapor pressure of water as a function of the temperature and the boiling point temperature of water as a function of the applied pressure. They are the same graph!

Remember that in the experiment, at the boiling point we observed that both liquid and gas are at equilibrium with one another. Both phases are present at the boiling point. This is true at every combination of applied pressure and boiling point temperature. Therefore, for every combination of temperature and pressure along the curve on the graph in Figure 1, we observe liquid-gas equilibrium.

What happens at combinations of temperature and pressure which are not on the line drawn in Figure 1? To find out, let’s run the experiment. We first start at any temperature-pressure combination on the curve and elevate the temperature while holding the applied pressure constant. In Figure 1, this moves us to the right of the curve. We observe that all of the liquid vaporizes, and there is only gas in the container. What happened to the equilibrium? At higher temperature, the vapor pressure of the liquid rises, but if the applied pressure does not also increase, then the vapor pressure will be greater than the applied pressure. The vapor pushes back the piston and the liquid evaporates. We must therefore not be at equilibrium anymore. For all temperature and pressure combinations to the right of the curve, only vapor exists.

Now let’s start at a point on the curve and lower the temperature while holding the pressure constant, leaving us to the left of the curve. We observe that all of the gas condenses into the liquid. This is because the vapor pressure is below the applied pressure, and the piston moves in against the gas until it all condenses into the liquid. For all temperature and pressure combinations to the left of the curve, only liquid exists.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concept development studies in chemistry 2013. OpenStax CNX. Oct 07, 2013 Download for free at http://legacy.cnx.org/content/col11579/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concept development studies in chemistry 2013' conversation and receive update notifications?

Ask