<< Chapter < Page Chapter >> Page >

This view must be incomplete, though. Each individual particle might create a force proportional to 2v , but there are many particles hitting the wall, generating force, and our pressure gauge can’t possibly measure each tiny impact. So we need to take a different view. The total force generated by all of these tiny impacts will be determined by how many of these impacts there are. If the particles hit the wall more often, then the force will be higher. What determines how frequently the particles hit the wall? One factor should be how dense the particles are. If there are a great many particles in a small volume, then many of the particles will be near the wall and collide with it. So, the frequency of the collisions of the particles with the walls should be proportional to N/V , where N is the number of particles. A second factor would be how large the area of our pressure gauge is, A . A larger surface would be proportionally more collisions. A third factor would be how fast each particle is moving. Faster particles will create more frequent collisions with the wall. Each of these factors individually makes sense.

It is important to note that we have calculated the force of each tiny impact completely independently of the force of impact of any other particles. In fact, from our postulates, we have assumed that the individual particles have no effect on each other since they are so far apart from each other. This is why we can think of the force created by the gas as coming from a huge number of collisions, each one independent of all the others.

Putting these factors together, the frequency of collisions should be proportional to (N/V)Av . If we multiply this by the force of each collision, the total force impacted will be proportional to (2mv)(N/V)Av . Finally, the pressure is the force per area, so we wind up with the result that pressure P must be proportional to 2mv 2 N/V . In an equation:

P = kNmv 2 V size 12{P= { { ital "kNmv" rSup { size 8{2} } } over {V} } } {}

( k is just some proportionality constant which we will need to find. We dropped the 2 since it is just a proportionality constant too.)

This result is very promising. It says that P is proportional to the number of particles N , which we could also write as the number of moles, n . That agrees with the Ideal Gas Law. It also says that P is inversely proportional to V . That also agrees with the Ideal Gas Law.

But there are two ways in which this equation looks different from the Ideal Gas Law. The first is that temperature is missing. This is because there was nothing in our postulates about temperature because we had no experiments which told us about how temperature affected molecular motion. The second is the appearance of the term mv 2 . From Physics, this is a very familiar expression, since the kinetic energy of a particle of mass m moving with speed v is ½ mv 2 . Notice that the pressure is proportional to the kinetic energy of the particles.

It is hard to solve the first concern. Temperature as we measured it in the previous Concept Development Study is an arbitrary measure of hot and cold. We simply observed that this measure turned out to the proportional to the pressure of an ideal gas. However, if we compare our equation to the Ideal Gas Law, we can make progress. The Ideal Gas Law tells us that pressure is proportional to n/V times the temperature T . Our equation above tells us that pressure is proportional to N/V times the kinetic energy of the particles, ½ mv 2 . This tells us that the temperature T is proportional to the kinetic energy of each particle, ½ mv 2 .

Questions & Answers

Pathogens and diseases
how did the oxygen help a human being
Achol Reply
how did the nutrition help the plants
Achol Reply
Biology is a branch of Natural science which deals/About living Organism.
Ahmedin Reply
what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
cell is the smallest unit of the humanity biologically
Abraham
what is biology
Victoria Reply
what is biology
Abraham
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concept development studies in chemistry 2012. OpenStax CNX. Aug 16, 2012 Download for free at http://legacy.cnx.org/content/col11444/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concept development studies in chemistry 2012' conversation and receive update notifications?

Ask