<< Chapter < Page Chapter >> Page >

Introduction

We have noted that the Lewis model of chemical bonding is very powerful in predicting structures, stability, and reactivity of molecules. But there is a glaring hole in our model that you may have noticed: the metal elements are missing. Additionally, the Lewis model only applies to a handful of atoms at a time, and we have not examined what happens in solids that have huge numbers of atoms bonded in vast networks.

The Lewis model is based on the “octet rule” and the concept of a covalent bond as a sharing of an electron pair. These were developed based on the molecules formed by elements in Groups 4 to 8, and most specifically, the group of elements we call the “non-metals.” This name clearly says that the properties of the non-metal elements are very different from the properties of metal elements. We will look at these differences in this study. But even without analyzing those differences, we can say immediately that the octet rule does not seem to apply to these elements. Remember that the octet rule says that the number of valence electrons plus the valence of the atom (the number of bonds the atom typically forms) commonly equals 8 for compounds formed by the non-metal elements. Rather than being the general rule for metals, this is very rarely true. This means that we need a new model for bonding in metals and in compounds that contain metal atoms.

To develop this model, we will examine the specific properties of metallic elements, which differ significantly from the non-metals. By considering these properties carefully, we will be able to build a model which accounts for these properties.

Of course, to be more complete, we also need to consider compounds formed from combinations of metal atoms and non-metal atoms. These also have properties which differ greatly from either metals or non-metals. Again, by looking closely at these properties, we will be able to build a model for metal-non-metal bonding, which is different from that in metal bonding.

This means that we will develop models of two new types of bonding in addition to the one we have already developed for covalent bonding. It would be very helpful to find a way to tie these three types of bonding together, to give a simple understanding of why the bonding is different for different types and combinations of atoms. In the last section of this study, we will create such a model based on our understanding of the chemical concept of “electronegativity,” developed in the previous concept study.

Foundation

In this study, we will assume that we know the essential components of the structure and properties of individual atoms. Each atom has an electronic configuration which determines its physical and chemical properties, including ionization energy, electron affinity, atomic size, and electronegativity. Electron motion is described by orbitals, which give the probability for the electron in space around the nucleus. The energy of each electron is determined by a combination of its kinetic energy, its attraction to the nucleus, and its repulsion from other electrons in the atom. Our model considers the electron-electron repulsion as a “shielding” of the positive charge of the nucleus, resulting in an effective nuclear charge which is less than the actual nuclear charge, which we refer to as the core charge. By looking at the core charge experienced by an electron in an atom and at its distance from the nucleus, we can understand the ionization energy of that electron. We know and can account for the fact that the ionization energies are greatest for atoms near the right side of the periodic table with large core charges. And the ionization energies are greater for smaller atoms, where the valence electrons are closer to the nucleus.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concept development studies in chemistry 2012. OpenStax CNX. Aug 16, 2012 Download for free at http://legacy.cnx.org/content/col11444/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concept development studies in chemistry 2012' conversation and receive update notifications?

Ask