<< Chapter < Page Chapter >> Page >
Create a LabVIEW VI to experiment with ring modulation (also called amplitude modulation, or AM), and develop a LabVIEW VI to shift the pitch of a speech signal using the single-sideband modulation technique.
This module refers to LabVIEW, a software development environment that features a graphical programming language. Please see the LabVIEW QuickStart Guide module for tutorials and documentation that will help you:
•Apply LabVIEW to Audio Signal Processing
•Get started with LabVIEW
•Obtain a fully-functional evaluation edition of LabVIEW

Overview

Ring modulation (AM) is an audio special effect that produces two frequency-shifted replicas of the spectrum of a source signal, with one replica shifted to higher frequency and the other replica to a lower frequency. Single-sideband AM (SSB-AM) provides a way to shift the source signal's spectrum higher or lower but without the additional replica. SSB-AM provides one way toimplement a pitch shifter , an audio special effect that shifts the frequency of speech, singing, or a musical instrument to a higher or lower frequency.

In this project, use LabVIEW to implement several types of ring modulators and a pitch shifter.

Prerequisite modules

If you have not done so already, please study the prerequisite modules AM Mathematics and Pitch Shifting . If you are relatively new to LabVIEW, consider taking the course LabVIEW Techniques for Audio Signal Processing which provides the foundation you need to complete this mini-project activity, including working with arrays, creating subVIs, playing an array to the soundcard, and saving an array as a .wav sound file.

Deliverables

  • All LabVIEW code that you develop (block diagrams and front panels)
  • All generated sounds in .wav format
  • Any plots or diagrams requested
  • Summary write-up of your results

Part 1: multiple modulators

Consider an original signal x ( t ) , which is a sinusoid of frequency f 0 . The original signal is modulated by a cosine function of frequency f 0 / 2 to produce x 1 ( t ) , which is in turn modulated by a cosine function of frequency f 0 / 5 to produce x 2 ( t ) , which is in turn modulated by a cosine function of frequency f 0 / 9 to produce x 3 ( t ) . Sketch the frequency-domain version of the four signals, i.e., sketch X ( f ) , X 1 ( f ) , X 2 ( f ) , and X 3 ( f ) .

Create a LabVIEW implementation of the above arrangement and plot the spectrum of each of the four signals. Compare your LabVIEW results to your prediction.

Part 2: multiple modulators with soundfile input

Create a LabVIEW implementation of the multiple modulation scheme of Part 1 that can process a .wav audio file as the input signal. Use controls for the three modulators that will allow you to easilychange their modulation frequencies. Experiment with various choices of modulation frequencies to make an interesting effect. Create two .wav files using different parameter choices.

Part 3: pitch shifter

Implement the pitch shifting algorithm based on the single-sideband AM technique discussed in Pitch Shifter with Single-Sideband AM . Use a design similar to that of "am_demo3.vi" provided at the bottom of the page of AM Mathematics which accepts a .wav file as input and plays the sound. The sound clip should be relatively short (on the order of several seconds). For this part of the project, do not implement the pre-filter; you will do this in Part 4.

Evaluate the quality of your pitch shifter by presenting some written discussion and suitable spectrogram plots. Especially indicate whether you can find audible and visual evidence of aliasing.

The fast Hilbert transform built-in subVI is available in the "Signal Processing | Transforms" pallet.

Part 4: pitch shifter with anti-aliasing filter

Modify your pitch shifter to include a bandpass filter. State how you will compute the bandpass filter's upper and lower corner frequencies, given that you want to preserve as much of the original signal's bandwidth as possible.

Evaluate the quality of your modified pitch shifter by presenting some written discussion and suitable spectral plots. Compare your results with those you obtained in Part 3.

A variety of digital filters are available in the "Signal Processing | Filters" pallet.

Optional part 5: real-time processor

Choose one of the previous LabVIEW implementations and make it work in real time with a signal input (microphone) and interactive front-panel controls.

Evaluate the interrupt-driven approach using an event structure (see "am_demo1.vi" described in AM Mathematics , as well as the polled approach used by mic_in_speaker_out.vi ). Use whichever technique you prefer.

Submit your finished LabVIEW implementation as a distinct .zip file.

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Musical signal processing with labview -- modulation synthesis. OpenStax CNX. Nov 07, 2007 Download for free at http://cnx.org/content/col10483/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Musical signal processing with labview -- modulation synthesis' conversation and receive update notifications?

Ask