<< Chapter < Page Chapter >> Page >
Four men racing up a river in their kayaks.
Kinematic equations can help us describe and predict the motion of moving objects such as these kayaks racing in Newbury, England. (credit: Barry Skeates, Flickr)

Learning objectives

By the end of this section, you will be able to:

  • Calculate displacement of an object that is not accelerating, given initial position and velocity.
  • Calculate final velocity of an accelerating object, given initial velocity, acceleration, and time.
  • Calculate displacement and final position of an accelerating object, given initial position, initial velocity, time, and acceleration.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, or graphical representations. (S.P. 1.5, 2.1, 2.2)
  • 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)

We might know that the greater the acceleration of, say, a car moving away from a stop sign, the greater the displacement in a given time. But we have not developed a specific equation that relates acceleration and displacement. In this section, we develop some convenient equations for kinematic relationships, starting from the definitions of displacement, velocity, and acceleration already covered.

Notation: t , x , v , a

First, let us make some simplifications in notation. Taking the initial time to be zero, as if time is measured with a stopwatch, is a great simplification. Since elapsed time is Δ t = t f t 0 , taking t 0 = 0 means that Δ t = t f , the final time on the stopwatch. When initial time is taken to be zero, we use the subscript 0 to denote initial values of position and velocity. That is, x 0 is the initial position and v 0 is the initial velocity . We put no subscripts on the final values. That is, t is the final time , x is the final position , and v is the final velocity . This gives a simpler expression for elapsed time—now, Δ t = t . It also simplifies the expression for displacement, which is now Δ x = x x 0 . Also, it simplifies the expression for change in velocity, which is now Δ v = v v 0 . To summarize, using the simplified notation, with the initial time taken to be zero,

Δ t = t Δ x = x x 0 Δ v = v v 0

where the subscript 0 denotes an initial value and the absence of a subscript denotes a final value in whatever motion is under consideration.

We now make the important assumption that acceleration is constant . This assumption allows us to avoid using calculus to find instantaneous acceleration. Since acceleration is constant, the average and instantaneous accelerations are equal. That is,

a - = a = constant , size 12{ { bar {a}}=a="constant"} {}

so we use the symbol a size 12{a} {} for acceleration at all times. Assuming acceleration to be constant does not seriously limit the situations we can study nor degrade the accuracy of our treatment. For one thing, acceleration is constant in a great number of situations. Furthermore, in many other situations we can accurately describe motion by assuming a constant acceleration equal to the average acceleration for that motion. Finally, in motions where acceleration changes drastically, such as a car accelerating to top speed and then braking to a stop, the motion can be considered in separate parts, each of which has its own constant acceleration.

Questions & Answers

sound waves can be modeled as a change in pressure ,why is the change on in pressure used and not the actual pressure
Dotto Reply
what is the best
Kelly Reply
Water,air,fire
Maung
I am a university student of Myanmar.I am first year,first semester.I want to learn about physics.
Maung
two charges qA and qB are separated by a distance x. if we double the distance between the charges and triple the magnitude of the charge A, what happens to the magnitude of the force that charge A exerts on charge B. what happens to the magnitude of the force that charge B exerts on charge A
tanla Reply
how to get mcq and essay?
Owen Reply
what is force
Ibrahim Reply
force is a pull or push action on an object or a body.
joseph
what is a significant figure? and give example
Frederick
numerical chapter number 3
Sajid Reply
joined
Ibrahim
a reflected ray on a mirror makes an angle of 20degree with the incident ray when the mirror is rotated 15degree what angle will the incident ray now make with the reflected ray
Akinyemi Reply
what is simple harmonic motion
Solomon Reply
how vapour pressure of a liquid lost through convection
Yomzi Reply
Roofs are sometimes pushed off vertically during a tropical cyclone, and buildings sometimes explode outward when hit by a tornado. Use Bernoulli’s principle to explain these phenomena.
Aliraza Reply
Plz answer the question ☝️☝️
Aliraza
what's the basic si unit of acceleration
ELLOIN Reply
Explain why the change in velocity is different in the two frames, whereas the change in kinetic energy is the same in both.
Fabian Reply
Insulators (nonmetals) have a higher BE than metals, and it is more difficult for photons to eject electrons from insulators. Discuss how this relates to the free charges in metals that make them good conductors.
Muhammad Reply
Is the photoelectric effect a direct consequence of the wave character of EM radiation or of the particle character of EM radiation? Explain briefly.
Muhammad
Determine the total force and the absolute pressure on the bottom of a swimming pool 28.0m by 8.5m whose uniform depth is 1 .8m.
Henny Reply
how solve this problem?
Foday
P(pressure)=density ×depth×acceleration due to gravity Force =P×Area(28.0x8.5)
Fomukom
for the answer to complete, the units need specified why
muqaddas Reply
That's just how the AP grades. Otherwise, you could be talking about m/s when the answer requires m/s^2. They need to know what you are referring to.
Kyle

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask