<< Chapter < Page Chapter >> Page >
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. This chapter contains many examples of arithmetic techniques that are used directly or indirectly in algebra. Since the chapter is intended as a review, the problem-solving techniques are presented without being developed. Therefore, no work space is provided, nor does the chapter contain all of the pedagogical features of the text. As a review, this chapter can be assigned at the discretion of the instructor and can also be a valuable reference tool for the student.

Overview

  • Equivalent Fractions
  • Reducing Fractions To Lowest Terms
  • Raising Fractions To Higher Terms

Equivalent fractions

Equivalent fractions

Fractions that have the same value are called equivalent fractions.

For example, 2 3 and 4 6 represent the same part of a whole quantity and are therefore equivalent. Several more collections of equivalent fractions are listed below.

7 6 , 14 12 , 21 18 , 28 24 , 35 30

Got questions? Get instant answers now!

Reducing fractions to lowest terms

Reduced to lowest terms

It is often useful to convert one fraction to an equivalent fraction that has reduced values in the numerator and denominator. When a fraction is converted to an equivalent fraction that has the smallest numerator and denominator in the collection of equivalent fractions, it is said to be reduced to lowest terms. The conversion process is called reducing a fraction.

We can reduce a fraction to lowest terms by

  1. Expressing the numerator and denominator as a product of prime numbers. (Find the prime factorization of the numerator and denominator. See Section ( [link] ) for this technique.)
  2. Divide the numerator and denominator by all common factors. (This technique is commonly called “cancelling.”)

Sample set a

Reduce each fraction to lowest terms.

6 18 = 2 · 3 2 · 3 · 3 = 2 · 3 2 · 3 · 3 2 and 3 are common factors . = 1 3

Got questions? Get instant answers now!

16 20 = 2 · 2 · 2 · 2 2 · 2 · 5 = 2 · 2 · 2 · 2 2 · 2 · 5 2 is the only common factor . = 4 5

Got questions? Get instant answers now!

56 70 = 2 · 4 · 7 2 · 5 · 7 = 2 · 4 · 7 2 · 5 · 7 2 and 7 are common factors . = 4 5

Got questions? Get instant answers now!

8 15 = 2 · 2 · 2 3 · 5 There are no common factors . Thus , 8 15  is reduced to lowest terms .

Got questions? Get instant answers now!

Raising a fraction to higher terms

Equally important as reducing fractions is raising fractions to higher terms. Raising a fraction to higher terms is the process of constructing an equivalent fraction that has higher values in the numerator and denominator. The higher, equivalent fraction is constructed by multiplying the original fraction by 1.

Notice that 3 5 and 9 15 are equivalent, that is 3 5 = 9 15 . Also,

The product of three over five and one is equal to the product of three over five and three over three. This is equal to the product of three and three over the product of five and three, that in turn is equal to nine over fifteen. There is an arrow pointing towards one and three over three, indicating that one and three over three are equal.

This observation helps us suggest the following method for raising a fraction to higher terms.

Raising a fraction to higher terms

A fraction can be raised to higher terms by multiplying both the numerator and denominator by the same nonzero number.

For example, 3 4 can be raised to 24 32 by multiplying both the numerator and denominator by 8, that is, multiplying by 1 in the form 8 8 .

3 4 = 3 · 8 4 · 8 = 24 32

How did we know to choose 8 as the proper factor? Since we wish to convert 4 to 32 by multiplying it by some number, we know that 4 must be a factor of 32. This means that 4 divides into 32. In fact, 32 ÷ 4 = 8. We divided the original denominator into the new, specified denominator to obtain the proper factor for the multiplication.

Sample set b

Determine the missing numerator or denominator.

3 7 = ? 35 . Divide the original denominator ,  7 ,  into the new denominator , 35. 35 ÷ 7 = 5. Multiply the original numerator by 5 . 3 7 = 3 · 5 7 · 5 = 15 35

Got questions? Get instant answers now!

5 6 = 45 ? . Divide the original numerator ,  5 ,  into the new numerator , 45. 45 ÷ 5 = 9. Multiply the original denominator by 9 . 5 6 = 5 · 9 6 · 9 = 45 54

Got questions? Get instant answers now!

Exercises

For the following problems, reduce, if possible, each fraction lowest terms.

For the following problems, determine the missing numerator or denominator.

Questions & Answers

how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
what is isotopes
Nangun Reply
nuclei having the same Z and different N s
AI-Robot
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elementary algebra. OpenStax CNX. May 08, 2009 Download for free at http://cnx.org/content/col10614/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask