<< Chapter < Page Chapter >> Page >
M R I machine at a hospital.
Instrument for magnetic resonance imaging (MRI). The device uses a superconducting cylindrical coil for the main magnetic field. The patient goes into this “tunnel” on the gurney. (credit: Bill McChesney, Flickr)

[link] shows that the response of iron filings to a current-carrying coil and to a permanent bar magnet. The patterns are similar. In fact, electromagnets and ferromagnets have the same basic characteristics—for example, they have north and south poles that cannot be separated and for which like poles repel and unlike poles attract.

The arrangement of iron filings as they are affected by a metal coil that is carrying an electric current and a bar magnet. At the poles of the magnet, the filings are aligned radially to the poles. Between the poles, the filings are roughly parallel to the magnet. Thus, from one pole to the other, the filings have an arcuate arrangement. The density of filings is very high at the poles and relatively low on either side of the center of the magnet. The arrangement is similar around the current-carrying coil.
Iron filings near (a) a current-carrying coil and (b) a magnet act like tiny compass needles, showing the shape of their fields. Their response to a current-carrying coil and a permanent magnet is seen to be very similar, especially near the ends of the coil and the magnet.

Combining a ferromagnet with an electromagnet can produce particularly strong magnetic effects. (See [link] .) Whenever strong magnetic effects are needed, such as lifting scrap metal, or in particle accelerators, electromagnets are enhanced by ferromagnetic materials. Limits to how strong the magnets can be made are imposed by coil resistance (it will overheat and melt at sufficiently high current), and so superconducting magnets may be employed. These are still limited, because superconducting properties are destroyed by too great a magnetic field.

An electrical current runs through a metal wire that is coiled around a ferromagnet.
An electromagnet with a ferromagnetic core can produce very strong magnetic effects. Alignment of domains in the core produces a magnet, the poles of which are aligned with the electromagnet.

[link] shows a few uses of combinations of electromagnets and ferromagnets. Ferromagnetic materials can act as memory devices, because the orientation of the magnetic fields of small domains can be reversed or erased. Magnetic information storage on videotapes and computer hard drives are among the most common applications. This property is vital in our digital world.

Three views into a computer disk showing the magnetic portions of the recording head and the tape.
An electromagnet induces regions of permanent magnetism on a floppy disk coated with a ferromagnetic material. The information stored here is digital (a region is either magnetic or not); in other applications, it can be analog (with a varying strength), such as on audiotapes.

Current: the source of all magnetism

An electromagnet creates magnetism with an electric current. In later sections we explore this more quantitatively, finding the strength and direction of magnetic fields created by various currents. But what about ferromagnets? [link] shows models of how electric currents create magnetism at the submicroscopic level. (Note that we cannot directly observe the paths of individual electrons about atoms, and so a model or visual image, consistent with all direct observations, is made. We can directly observe the electron’s orbital angular momentum, its spin momentum, and subsequent magnetic moments, all of which are explained with electric-current-creating subatomic magnetism.) Currents, including those associated with other submicroscopic particles like protons, allow us to explain ferromagnetism and all other magnetic effects. Ferromagnetism, for example, results from an internal cooperative alignment of electron spins, possible in some materials but not in others.

Crucial to the statement that electric current is the source of all magnetism is the fact that it is impossible to separate north and south magnetic poles. (This is far different from the case of positive and negative charges, which are easily separated.) A current loop always produces a magnetic dipole—that is, a magnetic field that acts like a north pole and south pole pair. Since isolated north and south magnetic poles, called magnetic monopoles    , are not observed, currents are used to explain all magnetic effects. If magnetic monopoles did exist, then we would have to modify this underlying connection that all magnetism is due to electrical current. There is no known reason that magnetic monopoles should not exist—they are simply never observed—and so searches at the subnuclear level continue. If they do not exist, we would like to find out why not. If they do exist, we would like to see evidence of them.

Electric currents and magnetism

Electric current is the source of all magnetism.

Two atomic models that describe the relationship between the movement of electrons and magnetism.
(a) In the planetary model of the atom, an electron orbits a nucleus, forming a closed-current loop and producing a magnetic field with a north pole and a south pole. (b) Electrons have spin and can be crudely pictured as rotating charge, forming a current that produces a magnetic field with a north pole and a south pole. Neither the planetary model nor the image of a spinning electron is completely consistent with modern physics. However, they do provide a useful way of understanding phenomena.

Section summary

  • Magnetic poles always occur in pairs of north and south—it is not possible to isolate north and south poles.
  • All magnetism is created by electric current.
  • Ferromagnetic materials, such as iron, are those that exhibit strong magnetic effects.
  • The atoms in ferromagnetic materials act like small magnets (due to currents within the atoms) and can be aligned, usually in millimeter-sized regions called domains.
  • Domains can grow and align on a larger scale, producing permanent magnets. Such a material is magnetized, or induced to be magnetic.
  • Above a material’s Curie temperature, thermal agitation destroys the alignment of atoms, and ferromagnetism disappears.
  • Electromagnets employ electric currents to make magnetic fields, often aided by induced fields in ferromagnetic materials.

Questions & Answers

distinguish between anatomy and physiology
Amina Reply
Anatomy is the study of internal structure of an organism while physiology is the study of the function/relationship of the body organs working together as a system in an organism.
adeyeye
distinguish between anatomy and physiology
Erny Reply
regional anatomy is the study of the body regionally
Ismail Reply
what is the meaning of regional anatomy
Aminat Reply
epithelial tissue: it covers the Hollow organs and body cavities
Esomchi Reply
in short way what those epithelial tissue mean
Zainab Reply
in short way what those epithelial tissue mean
Chizoba
What is the function of the skeleton
Lilias Reply
movement
Ogar
Locomotion
Ojo
support
Aishat
and body shape/form
Aishat
what is homeostasis?
Samuel Reply
what's physiology
AminchiSunday Reply
what is physiology
AminchiSunday
physically is the study of the function of the body
Najaatu
that is what I want ask
YAU
u are wright
YAU
pls what are the main treatment of hiccups
YAU
physiology is the study of the function of the body
Najaatu
hiccups happen when something irritates the nerves that course your diaphragm to contract
Najaatu
how did hypothalamus manege to control all activities of the various hormones
malual
what is protein
Abdulsalam
how can I treat pain a patient feels after eating meals
Namuli Reply
how do I treat a three year old baby of skin infection?
Okocha Reply
It depends on the type of infection. Bacterial, fungal, parasitic or viral?
schler
if you can share the sign ad symptoms of the skin infection then u geh the treatment cox they're different sign ad symptoms of skin infection with different treatment
Sa
the sign and symptoms of maleria
Abdulsalam
prostaglandin and fever
Maha Reply
yes
rayyanu
welcome sir
rayyanu
prostaglandin E2 is the final mediator.
Lemlem
prostaglandin E2 is the final mediator of fever.
Lemlem
yes
Agabi
good evening
Jediel
tissue.
Akoi
explain
Chizoba
Hi
Anya
,good evening
Anya
Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concepts of physics. OpenStax CNX. Aug 25, 2015 Download for free at https://legacy.cnx.org/content/col11738/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of physics' conversation and receive update notifications?

Ask