<< Chapter < Page Chapter >> Page >
(Blank Abstract)

Mathematically, analog signals are functions having as their independent variables continuous quantities, such as space andtime. Discrete-time signals are functions defined on the integers; they are sequences. As with analog signals, we seekways of decomposing discrete-time signals into simpler components. Because this approach leads to a betterunderstanding of signal structure, we can exploit that structure to represent information (create ways of representinginformation with signals) and to extract information (retrieve the information thus represented). For symbolic-valued signals,the approach is different: We develop a common representation of all symbolic-valued signals so that we can embody theinformation they contain in a unified way. From an information representation perspective, the most important issue becomes,for both real-valued and symbolic-valued signals, efficiency: what is the most parsimonious and compact way to representinformation so that it can be extracted later.

Real- and complex-valued signals

A discrete-time signal is represented symbolically as s n , where n -1 0 1 .

Cosine

The discrete-time cosine signal is plotted as a stem plot. Can you find the formula for this signal?
We usually draw discrete-time signals as stem plots to emphasize the fact they are functions defined only on theintegers. We can delay a discrete-time signal by an integer just as with analog ones. A signal delayed by m samples has the expression s n m .

Complex exponentials

The most important signal is, of course, the complex exponential sequence .

s n 2 f n
Note that the frequency variable f is dimensionless and that adding an integer to the frequency of the discrete-time complex exponential has no effect on the signal's value.
2 f m n 2 f n 2 m n 2 f n
This derivation follows because the complex exponential evaluated at an integer multiple of 2 equals one. Thus, we need only consider frequency to have a value in some unit-length interval.

Sinusoids

Discrete-time sinusoids have the obvious form s n A 2 f n φ . As opposed to analog complex exponentials and sinusoids that can have their frequencies be any real value,frequencies of their discrete-time counterparts yield unique waveforms only when f lies in the interval 1 2 1 2 . This choice of frequency interval is arbitrary; we can also choose the frequency to lie in the interval 0 1 . How to choose a unit-length interval for a sinusoid's frequency will become evident later.

Unit sample

The second-most important discrete-time signal is the unit sample , which is defined to be

δ n 1 n 0 0

Unit sample

The unit sample.
Examination of a discrete-time signal's plot, like that of the cosine signal shown in [link] , reveals that all signals consist of a sequence of delayed andscaled unit samples. Because the value of a sequence at each integer m is denoted by s m and the unit sample delayed to occur at m is written δ n m , we can decompose any signal as a sum of unit samples delayed to the appropriate location andscaled by the signal value.
s n m s m δ n m
This kind of decomposition is unique to discrete-time signals, and will prove useful subsequently.

Unit step

The unit step in discrete-time is well-defined at the origin, as opposed to the situation with analog signals.

u n 1 n 0 0 n 0

Symbolic signals

An interesting aspect of discrete-time signals is that their values do not need to be real numbers. We do have real-valueddiscrete-time signals like the sinusoid, but we also have signals that denote the sequence of characters typed on thekeyboard. Such characters certainly aren't real numbers, and as a collection of possible signal values, they have littlemathematical structure other than that they are members of a set. More formally, each element of the symbolic-valued signal s n takes on one of the values a 1 a K which comprise the alphabet A . This technical terminology does not mean we restrict symbols to being members of the Englishor Greek alphabet. They could represent keyboard characters, bytes (8-bit quantities), integers that convey dailytemperature. Whether controlled by software or not, discrete-time systems are ultimately constructed from digitalcircuits, which consist entirely of analog circuit elements. Furthermore, the transmission andreception of discrete-time signals, like e-mail, is accomplished with analog signals and systems. Understandinghow discrete-time and analog signals and systems intertwine is perhaps the main goal of this course.

Discrete-time systems

Discrete-time systems can act on discrete-time signals in ways similar to those found in analog signals and systems. Becauseof the role of software in discrete-time systems, many more different systems can be envisioned and "constructed" withprograms than can be with analog signals. In fact, a special class of analog signals can be converted into discrete-timesignals, processed with software, and converted back into an analog signal, all without the incursion of error. For suchsignals, systems can be easily produced in software, with equivalent analog realizations difficult, if not impossible,to design.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of signal processing. OpenStax CNX. Nov 26, 2012 Download for free at http://cnx.org/content/col10360/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of signal processing' conversation and receive update notifications?

Ask