<< Chapter < Page Chapter >> Page >

Time

The SI base unit of time is the second (s)    . Small and large time intervals can be expressed with the appropriate prefixes; for example, 3 microseconds = 0.000003 s = 3 × 10 −6 and 5 megaseconds = 5,000,000 s = 5 × 10 6 s. Alternatively, hours, days, and years can be used.

Derived si units

We can derive many units from the seven SI base units. For example, we can use the base unit of length to define a unit of volume, and the base units of mass and length to define a unit of density.

Volume

Volume is the measure of the amount of space occupied by an object. The standard SI unit of volume is defined by the base unit of length ( [link] ). The standard volume is a cubic meter (m 3 )    , a cube with an edge length of exactly one meter. To dispense a cubic meter of water, we could build a cubic box with edge lengths of exactly one meter. This box would hold a cubic meter of water or any other substance.

A more commonly used unit of volume is derived from the decimeter (0.1 m, or 10 cm). A cube with edge lengths of exactly one decimeter contains a volume of one cubic decimeter (dm 3 ). A liter (L)    is the more common name for the cubic decimeter. One liter is about 1.06 quarts.

A cubic centimeter (cm 3 ) is the volume of a cube with an edge length of exactly one centimeter. The abbreviation cc (for c ubic c entimeter) is often used by health professionals. A cubic centimeter is also called a milliliter (mL)    and is 1/1000 of a liter.

Figure A shows a large cube, which has a volume of 1 meter cubed. This larger cube is made up of many smaller cubes in a 10 by 10 pattern. Each of these smaller cubes has a volume of 1 decimeter cubed, or one liter. Each of these smaller cubes is, in turn, made up of many tiny cubes. Each of these tiny cubes has a volume of 1 centimeter cubed, or one milliliter. A one cubic centimeter cube is about the same width as a dime, which has a width of 1.8 centimeter.
(a) The relative volumes are shown for cubes of 1 m 3 , 1 dm 3 (1 L), and 1 cm 3 (1 mL) (not to scale). (b) The diameter of a dime is compared relative to the edge length of a 1-cm 3 (1-mL) cube.

Density

We use the mass and volume of a substance to determine its density. Thus, the units of density are defined by the base units of mass and length.

The density    of a substance is the ratio of the mass of a sample of the substance to its volume. The SI unit for density is the kilogram per cubic meter (kg/m 3 ). For many situations, however, this as an inconvenient unit, and we often use grams per cubic centimeter (g/cm 3 ) for the densities of solids and liquids, and grams per liter (g/L) for gases. Although there are exceptions, most liquids and solids have densities that range from about 0.7 g/cm 3 (the density of gasoline) to 19 g/cm 3 (the density of gold). The density of air is about 1.2 g/L. [link] shows the densities of some common substances.

Densities of Common Substances
Solids Liquids Gases (at 25 °C and 1 atm)
ice (at 0 °C) 0.92 g/cm 3 water 1.0 g/cm 3 dry air 1.20 g/L
oak (wood) 0.60–0.90 g/cm 3 ethanol 0.79 g/cm 3 oxygen 1.31 g/L
iron 7.9 g/cm 3 acetone 0.79 g/cm 3 nitrogen 1.14 g/L
copper 9.0 g/cm 3 glycerin 1.26 g/cm 3 carbon dioxide 1.80 g/L
lead 11.3 g/cm 3 olive oil 0.92 g/cm 3 helium 0.16 g/L
silver 10.5 g/cm 3 gasoline 0.70–0.77 g/cm 3 neon 0.83 g/L
gold 19.3 g/cm 3 mercury 13.6 g/cm 3 radon 9.1 g/L

While there are many ways to determine the density of an object, perhaps the most straightforward method involves separately finding the mass and volume of the object, and then dividing the mass of the sample by its volume. In the following example, the mass is found directly by weighing, but the volume is found indirectly through length measurements.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask