<< Chapter < Page Chapter >> Page >
This diagram has an upward pointing arrow at the left which is labeled, “B subscript 0.” To the right, two spheres are shown. The first has a gray square at the top labeled, “N,” and a second gray square at the bottom labeled, “S.” A curved arrow is pointing right across the surface of the sphere and a gray arrow points upward through the center of the sphere. This sphere is labeled, “Spin plus one-half, spin-up.” The sphere just to the right has a gray square above it labeled, “S,” and a gray square below it labeled, “N.” This sphere has a curved arrow on its surface that is directed to the left and a gray arrow through the center of the sphere that points downward. This sphere is labeled, “Spin negative one-half spin-down.”
Electrons with spin values ± 1 2 in an external magnetic field.

[link] illustrates this phenomenon. An electron acts like a tiny magnet. Its moment is directed up (in the positive direction of the z axis) for the 1 2 spin quantum number and down (in the negative z direction) for the spin quantum number of 1 2 . A magnet has a lower energy if its magnetic moment is aligned with the external magnetic field (the left electron on [link] ) and a higher energy for the magnetic moment being opposite to the applied field. This is why an electron with m s = 1 2 has a slightly lower energy in an external field in the positive z direction, and an electron with m s = 1 2 has a slightly higher energy in the same field. This is true even for an electron occupying the same orbital in an atom. A spectral line corresponding to a transition for electrons from the same orbital but with different spin quantum numbers has two possible values of energy; thus, the line in the spectrum will show a fine structure splitting.

The pauli exclusion principle

An electron in an atom is completely described by four quantum numbers: n , l , m l , and m s . The first three quantum numbers define the orbital and the fourth quantum number describes the intrinsic electron property called spin. An Austrian physicist Wolfgang Pauli formulated a general principle that gives the last piece of information that we need to understand the general behavior of electrons in atoms. The Pauli exclusion principle    can be formulated as follows: No two electrons in the same atom can have exactly the same set of all the four quantum numbers. What this means is that electrons can share the same orbital (the same set of the quantum numbers n , l , and m l ), but only if their spin quantum numbers m s have different values. Since the spin quantum number can only have two values ( ± 1 2 ) , no more than two electrons can occupy the same orbital (and if two electrons are located in the same orbital, they must have opposite spins). Therefore, any atomic orbital can be populated by only zero, one, or two electrons.

The properties and meaning of the quantum numbers of electrons in atoms are briefly summarized in [link] .

Quantum Numbers, Their Properties, and Significance
Name Symbol Allowed values Physical meaning
principle quantum number n 1, 2, 3, 4, …. shell, the general region for the value of energy for an electron on the orbital
angular momentum or azimuthal quantum number l 0 ≤ l n – 1 subshell, the shape of the orbital
magnetic quantum number m l l m l l orientation of the orbital
spin quantum number m s 1 2 , 1 2 direction of the intrinsic quantum “spinning” of the electron

Working with shells and subshells

Indicate the number of subshells, the number of orbitals in each subshell, and the values of l and m l for the orbitals in the n = 4 shell of an atom.

Solution

For n = 4, l can have values of 0, 1, 2, and 3. Thus, s , p , d , and f subshells are found in the n = 4 shell of an atom. For l = 0 (the s subshell), m l can only be 0. Thus, there is only one 4 s orbital. For l = 1 ( p -type orbitals), m can have values of –1, 0, +1, so we find three 4 p orbitals. For l = 2 ( d -type orbitals), m l can have values of –2, –1, 0, +1, +2, so we have five 4 d orbitals. When l = 3 ( f -type orbitals), m l can have values of –3, –2, –1, 0, +1, +2, +3, and we can have seven 4 f orbitals. Thus, we find a total of 16 orbitals in the n = 4 shell of an atom.

Check your learning

Identify the subshell in which electrons with the following quantum numbers are found: (a) n = 3, l = 1; (b) n = 5, l = 3; (c) n = 2, l = 0.

Answer:

(a) 3 p (b) 5 f (c) 2 s

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask