<< Chapter < Page Chapter >> Page >
Three structures are shown. In a, a central A g atom has N atoms bonded to the left and right as indicated by line segments. Three H atoms are similarly bonded to each N atom extending out and up, out to the side, and out and below each N atom. The structure is enclosed in brackets with a superscript plus sign to the right of the brackets. In b, a C u atom is at the center of the structure. Line segments indicate bonds to two C l atoms, one above and the other below and to the left of the central atom. To the right, a dashed wedge, narrow toward the C u atom and widening toward a C l atom, is shown at the right side of the central C u atom. A solid wedge is similarly directed toward a C l atom below and slightly right of the central C u atom. This structure is enclosed in brackets with a superscript 2 negative sign present to the right of the brackets. In c, a structure is shown with a central C o atom. From the C o atom, line segments indicate bonds to H subscript 2 O molecules above and below the structure. Above and to both the right and left, dashed wedges indicate bonds to two H subscript 2 O molecules. Similarly, solid wedges below to both the right and left indicate bonds to two more H subscript 2 O molecules. Each bond in this structure is directed toward the O atom in each H subscript 2 O structure. This structure is enclosed in brackets. Outside the brackets to the right is a superscript 2 plus sign.
The complexes (a) [Ag(NH 3 ) 2 ] + , (b) [Cu(Cl) 4 ] 2− , and (c) [Co(H 2 O) 6 ] 2+ have coordination numbers of two, four, and six, respectively. The geometries of these complexes are the same as we have seen with VSEPR theory for main group elements: linear, tetrahedral, and octahedral.

Many other ligands coordinate to the metal in more complex fashions. Bidentate ligands are those in which two atoms coordinate to the metal center. For example, ethylenediamine (en, H 2 NCH 2 CH 2 NH 2 ) contains two nitrogen atoms, each of which has a lone pair and can serve as a Lewis base ( [link] ). Both of the atoms can coordinate to a single metal center. In the complex [Co(en) 3 ] 3+ , there are three bidentate en ligands, and the coordination number of the cobalt(III) ion is six. The most common coordination numbers are two, four, and six, but examples of all coordination numbers from 1 to 15 are known.

Two structures are shown. In a, H subscript 2 N appears at the left end of the structure. A short line segment extends up and to the right from the N atom to a C atom in a C H subscript 2 group. A short line segment extends down and to the right to another C atom in a C H subscript 2 group. A final short line segment extends from this C H subscript 2 group up and to the right to the N atom of an N H subscript 2 group. Each N atom in the structure has a pair of electron dots at its top. In b, a central C o atom has six N H subscript 2 groups attached with single bonds. These bonds are indicated with line segments extending above and below, dashed wedges extending up and to the left and right, and solid wedges extending below and to the left and right. The bonds to these groups are all directed toward the N atoms. The N H subscript 2 groups are each connected to C atoms of C H subscript 2 groups extending outward from the central C o atom. These C H subscript 2 groups are connected in pairs with bonds indicated by short line segments, forming 3 rings in the structure. This entire structure is enclosed in brackets. Outside the brackets to the right is a superscript 3 plus sign.
(a) The ethylenediamine (en) ligand contains two atoms with lone pairs that can coordinate to the metal center. (b) The cobalt(III) complex [ Co ( en ) 3 ] 3+ contains three of these ligands, each forming two bonds to the cobalt ion.

Any ligand that bonds to a central metal ion by more than one donor atom is a polydentate ligand    (or “many teeth”) because it can bite into the metal center with more than one bond. The term chelate    (pronounced “KEY-late”) from the Greek for “claw” is also used to describe this type of interaction. Many polydentate ligands are chelating ligands , and a complex consisting of one or more of these ligands and a central metal is a chelate. A chelating ligand is also known as a chelating agent. A chelating ligand holds the metal ion rather like a crab’s claw would hold a marble. [link] showed one example of a chelate. The heme complex in hemoglobin is another important example ( [link] ). It contains a polydentate ligand with four donor atoms that coordinate to iron.

A structure is shown for the single ligand heme. At the center of this structure is an F e atom. From this atom, four single bonds extend up and to the right and left and below and to the right and left to four N atoms which are shown in red. Each N atom is a component of a 5 member ring with four C atoms. Each of these rings has a double bond between the C atoms that are not bonded to the N atom. The C atoms that are bonded to N atoms are connected to C atoms that serve as links between the 5-member rings. The bond to the C atom clockwise from the 5-member ring in each case is a double bond. The bond to the C atom counterclockwise from the 5-member ring in each case is a single bond. To the left of the structure, two of the C atoms in the 5-member rings that are not bonded to N are bonded to C H subscript 3 groups. The other carbons in these rings that are not bonded to N atoms are bonded to groups above and below. Above is a C H group double bonded to a C H subscript 2 group. Below is a C H subscript 2 group bonded to another C H subscript 2 group, which is bonded to a C O subscript 2 H group. At the right side of the structure, the C atoms in the 5-member rings that are not bonded to N atoms are bonded to additional structures. The C atom at to the right in the 5-member ring at the upper right is bonded to a C H group which is in turn double bonded to a C H subscript 2 group. Similarly, the right most C atom from the 5-member ring in the lower right is bonded to a C H subscript 3 group. The C atom from the 5-member ring not bonded to an N atom in the upper right region of the structure is bonded to a C H subscript 3 group above. Similarly, the C atom on the 5-member ring not bonded to an N atom in the lower right region of the structure is bonded to a C H subscript 2 group that is bonded to another C H subscript 2 group, which is bonded to a C O subscript 2 H group below.
The single ligand heme contains four nitrogen atoms that coordinate to iron in hemoglobin to form a chelate.

Polydentate ligands are sometimes identified with prefixes that indicate the number of donor atoms in the ligand. As we have seen, ligands with one donor atom, such as NH 3 , Cl , and H 2 O, are monodentate ligands. Ligands with two donor groups are bidentate ligands. Ethylenediamine, H 2 NCH 2 CH 2 NH 2 , and the anion of the acid glycine, NH 2 CH 2 CO 2 ( [link] ) are examples of bidentate ligands. Tridentate ligands, tetradentate ligands, pentadentate ligands, and hexadentate ligands contain three, four, five, and six donor atoms, respectively. The ligand in heme ( [link] ) is a tetradentate ligand.

A structure is shown. At the center of this structure is an P t atom. From this atom, two single bonds extend up and to the right and below and to the left to two O atoms which are shown in red. Similarly, two bonds extend up and to the left and down and to the right to N atoms in N H subscript 2 groups. The N atoms in these groups are in red. The N atoms are bonded to C H subscript 2 groups, which in turn are bonded to C atoms. These C atoms have doubly bonded O atoms bonded and oriented toward the outside of the structure. They are also singly bonded to the O atoms in the structure forming two rings connected by the central P t atom.
Each of the anionic ligands shown attaches in a bidentate fashion to platinum(II), with both a nitrogen and oxygen atom coordinating to the metal.

The naming of complexes

The nomenclature of the complexes is patterned after a system suggested by Alfred Werner, a Swiss chemist and Nobel laureate, whose outstanding work more than 100 years ago laid the foundation for a clearer understanding of these compounds. The following five rules are used for naming complexes:

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask