<< Chapter < Page Chapter >> Page >

If the temperature of a gas increases, its KE avg increases, more molecules have higher speeds and fewer molecules have lower speeds, and the distribution shifts toward higher speeds overall, that is, to the right. If temperature decreases, KE avg decreases, more molecules have lower speeds and fewer molecules have higher speeds, and the distribution shifts toward lower speeds overall, that is, to the left. This behavior is illustrated for nitrogen gas in [link] .

A graph with four positively or right-skewed curves of varying heights is shown. The horizontal axis is labeled, “Velocity v ( m divided by s ).” This axis is marked by increments of 500 beginning at 0 and extending up to 1500. The vertical axis is labeled, “Fraction of molecules.” The label, “N subscript 2,” appears in the open space in the upper right area of the graph. The tallest and narrowest of these curves is labeled, “100 K.” Its right end appears to touch the horizontal axis around 700 m per s. It is followed by a slightly wider curve which is labeled, “200 K,” that is about three quarters of the height of the initial curve. Its right end appears to touch the horizontal axis around 850 m per s. The third curve is significantly wider and only about half the height of the initial curve. It is labeled, “500 K.” Its right end appears to touch the horizontal axis around 1450 m per s. The final curve is only about one third the height of the initial curve. It is much wider than the others, so much so that its right end has not yet reached the horizontal axis. This curve is labeled, “1000 K.”
The molecular speed distribution for nitrogen gas (N 2 ) shifts to the right and flattens as the temperature increases; it shifts to the left and heightens as the temperature decreases.

At a given temperature, all gases have the same KE avg for their molecules. Gases composed of lighter molecules have more high-speed particles and a higher u rms , with a speed distribution that peaks at relatively higher velocities. Gases consisting of heavier molecules have more low-speed particles, a lower u rms , and a speed distribution that peaks at relatively lower velocities. This trend is demonstrated by the data for a series of noble gases shown in [link] .

A graph is shown with four positively or right-skewed curves of varying heights. The horizontal axis is labeled, “Velocity v ( m divided by s ).” This axis is marked by increments of 500 beginning at 0 and extending up to 3000. The vertical axis is labeled, “Fraction of molecules.” The tallest and narrowest of these curves is labeled, “X e.” Its right end appears to touch the horizontal axis around 600 m per s. It is followed by a slightly wider curve which is labeled, “A r,” that is about half the height of the initial curve. Its right end appears to touch the horizontal axis around 900 m per s. The third curve is significantly wider and just over a third of the height of the initial curve. It is labeled, “N e.” Its right end appears to touch the horizontal axis around 1200 m per s. The final curve is only about one fourth the height of the initial curve. It is much wider than the others, so much so that its right reaches the horizontal axis around 2500 m per s. This curve is labeled, “H e.”
Molecular velocity is directly related to molecular mass. At a given temperature, lighter molecules move faster on average than heavier molecules.

The kinetic-molecular theory explains the behavior of gases, part ii

According to Graham’s law, the molecules of a gas are in rapid motion and the molecules themselves are small. The average distance between the molecules of a gas is large compared to the size of the molecules. As a consequence, gas molecules can move past each other easily and diffuse at relatively fast rates.

The rate of effusion of a gas depends directly on the (average) speed of its molecules:

effusion rate u rms

Using this relation, and the equation relating molecular speed to mass, Graham’s law may be easily derived as shown here:

u rms = 3 R T m
m = 3 R T u r m s 2 = 3 R T u ¯ 2
effusion rate A effusion rate B = u r m s A u r m s B = 3 R T m A 3 R T m B = m B m A

The ratio of the rates of effusion is thus derived to be inversely proportional to the ratio of the square roots of their masses. This is the same relation observed experimentally and expressed as Graham’s law.

Key concepts and summary

The kinetic molecular theory is a simple but very effective model that effectively explains ideal gas behavior. The theory assumes that gases consist of widely separated molecules of negligible volume that are in constant motion, colliding elastically with one another and the walls of their container with average velocities determined by their absolute temperatures. The individual molecules of a gas exhibit a range of velocities, the distribution of these velocities being dependent on the temperature of the gas and the mass of its molecules.

Key equations

  • u r m s = u 2 ¯ = u 1 2 + u 2 2 + u 3 2 + u 4 2 + n
  • KE avg = 3 2 R T
  • u rms = 3 R T m

Questions & Answers

how did you get 1640
Noor Reply
If auger is pair are the roots of equation x2+5x-3=0
Peter Reply
Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.
MATTHEW Reply
420
Sharon
from theory: distance [miles] = speed [mph] × time [hours] info #1 speed_Dennis × 1.5 = speed_Wayne × 2 => speed_Wayne = 0.75 × speed_Dennis (i) info #2 speed_Dennis = speed_Wayne + 7 [mph] (ii) use (i) in (ii) => [...] speed_Dennis = 28 mph speed_Wayne = 21 mph
George
Let W be Wayne's speed in miles per hour and D be Dennis's speed in miles per hour. We know that W + 7 = D and W * 2 = D * 1.5. Substituting the first equation into the second: W * 2 = (W + 7) * 1.5 W * 2 = W * 1.5 + 7 * 1.5 0.5 * W = 7 * 1.5 W = 7 * 3 or 21 W is 21 D = W + 7 D = 21 + 7 D = 28
Salma
Devon is 32 32​​ years older than his son, Milan. The sum of both their ages is 54 54​. Using the variables d d​ and m m​ to represent the ages of Devon and Milan, respectively, write a system of equations to describe this situation. Enter the equations below, separated by a comma.
Aaron Reply
find product (-6m+6) ( 3m²+4m-3)
SIMRAN Reply
-42m²+60m-18
Salma
what is the solution
bill
how did you arrive at this answer?
bill
-24m+3+3mÁ^2
Susan
i really want to learn
Amira
I only got 42 the rest i don't know how to solve it. Please i need help from anyone to help me improve my solving mathematics please
Amira
Hw did u arrive to this answer.
Aphelele
hi
Bajemah
-6m(3mA²+4m-3)+6(3mA²+4m-3) =-18m²A²-24m²+18m+18mA²+24m-18 Rearrange like items -18m²A²-24m²+42m+18A²-18
Salma
complete the table of valuesfor each given equatio then graph. 1.x+2y=3
Jovelyn Reply
x=3-2y
Salma
y=x+3/2
Salma
Hi
Enock
given that (7x-5):(2+4x)=8:7find the value of x
Nandala
3x-12y=18
Kelvin
please why isn't that the 0is in ten thousand place
Grace Reply
please why is it that the 0is in the place of ten thousand
Grace
Send the example to me here and let me see
Stephen
A meditation garden is in the shape of a right triangle, with one leg 7 feet. The length of the hypotenuse is one more than the length of one of the other legs. Find the lengths of the hypotenuse and the other leg
Marry Reply
how far
Abubakar
cool u
Enock
state in which quadrant or on which axis each of the following angles given measure. in standard position would lie 89°
Abegail Reply
hello
BenJay
hi
Method
I am eliacin, I need your help in maths
Rood
how can I help
Sir
hmm can we speak here?
Amoon
however, may I ask you some questions about Algarba?
Amoon
hi
Enock
what the last part of the problem mean?
Roger
The Jones family took a 15 mile canoe ride down the Indian River in three hours. After lunch, the return trip back up the river took five hours. Find the rate, in mph, of the canoe in still water and the rate of the current.
cameron Reply
Shakir works at a computer store. His weekly pay will be either a fixed amount, $925, or $500 plus 12% of his total sales. How much should his total sales be for his variable pay option to exceed the fixed amount of $925.
mahnoor Reply
I'm guessing, but it's somewhere around $4335.00 I think
Lewis
12% of sales will need to exceed 925 - 500, or 425 to exceed fixed amount option. What amount of sales does that equal? 425 ÷ (12÷100) = 3541.67. So the answer is sales greater than 3541.67. Check: Sales = 3542 Commission 12%=425.04 Pay = 500 + 425.04 = 925.04. 925.04 > 925.00
Munster
difference between rational and irrational numbers
Arundhati Reply
When traveling to Great Britain, Bethany exchanged $602 US dollars into £515 British pounds. How many pounds did she receive for each US dollar?
Jakoiya Reply
how to reduced echelon form
Solomon Reply
Jazmine trained for 3 hours on Saturday. She ran 8 miles and then biked 24 miles. Her biking speed is 4 mph faster than her running speed. What is her running speed?
Zack Reply
d=r×t the equation would be 8/r+24/r+4=3 worked out
Sheirtina
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask