<< Chapter < Page Chapter >> Page >
bond order = ( number of bonding electrons ) ( number of antibonding electrons ) 2

The order of a covalent bond is a guide to its strength; a bond between two given atoms becomes stronger as the bond order increases ( [link] ). If the distribution of electrons in the molecular orbitals between two atoms is such that the resulting bond would have a bond order of zero, a stable bond does not form. We next look at some specific examples of MO diagrams and bond orders.

Bonding in diatomic molecules

A dihydrogen molecule (H 2 ) forms from two hydrogen atoms. When the atomic orbitals of the two atoms combine, the electrons occupy the molecular orbital of lowest energy, the σ 1 s bonding orbital. A dihydrogen molecule, H 2 , readily forms because the energy of a H 2 molecule is lower than that of two H atoms. The σ 1 s orbital that contains both electrons is lower in energy than either of the two 1 s atomic orbitals.

A molecular orbital can hold two electrons, so both electrons in the H 2 molecule are in the σ 1 s bonding orbital; the electron configuration is ( σ 1 s ) 2 . We represent this configuration by a molecular orbital energy diagram ( [link] ) in which a single upward arrow indicates one electron in an orbital, and two (upward and downward) arrows indicate two electrons of opposite spin.

A diagram is shown that has an upward-facing vertical arrow running along the left side labeled “E.” At the bottom center of the diagram is a horizontal line labeled, “sigma subscript 1 s,” that has two vertical half arrows drawn on it, one facing up and one facing down. This line is connected to the right and left by upward-facing, dotted lines to two more horizontal lines, each labeled, “1 s,” and each with one vertical half-arrow facing up drawn on it. These two lines are connected by upward-facing dotted lines to another line in the center of the diagram, but farther up from the first, and labeled, “sigma subscript 1 s superscript asterisk.” The left and right sides of the diagram have headers that read, ”Atomic orbitals,” while the center header reads, “Molecular orbitals.” The bottom left and right are labeled “H” while the center is labeled “H subscript 2.”
The molecular orbital energy diagram predicts that H 2 will be a stable molecule with lower energy than the separated atoms.

A dihydrogen molecule contains two bonding electrons and no antibonding electrons so we have

bond order in H 2 = ( 2 0 ) 2 = 1

Because the bond order for the H–H bond is equal to 1, the bond is a single bond.

A helium atom has two electrons, both of which are in its 1 s orbital. Two helium atoms do not combine to form a dihelium molecule, He 2 , with four electrons, because the stabilizing effect of the two electrons in the lower-energy bonding orbital would be offset by the destabilizing effect of the two electrons in the higher-energy antibonding molecular orbital. We would write the hypothetical electron configuration of He 2 as ( σ 1 s ) 2 ( σ 1 s * ) 2 as in [link] . The net energy change would be zero, so there is no driving force for helium atoms to form the diatomic molecule. In fact, helium exists as discrete atoms rather than as diatomic molecules. The bond order in a hypothetical dihelium molecule would be zero.

bond order in He 2 = ( 2 2 ) 2 = 0

A bond order of zero indicates that no bond is formed between two atoms.

A diagram is shown that has an upward-facing vertical arrow running along the left side labeled, “E.” At the bottom center of the diagram is a horizontal line labeled, “sigma subscript 1 s,” that has two vertical half arrows drawn on it, one facing up and one facing down. This line is connected to the right and left by upward-facing, dotted lines to two more horizontal lines, each labeled, “1 s,” and each with one vertical half-arrow facing up and one facing down drawn on it. These two lines are connected by upward-facing dotted lines to another line in the center of the diagram, but farther up from the first, and labeled, “sigma subscript 1 s superscript asterisk.” This line has one upward-facing and one downward-facing vertical arrow drawn on it. The left and right sides of the diagram have headers that read, “Atomic orbitals,” while the center header reads, “Molecular orbitals.” The bottom left and right are labeled, “H e,” while the center is labeled, “H e subscript 2.”
The molecular orbital energy diagram predicts that He 2 will not be a stable molecule, since it has equal numbers of bonding and antibonding electrons.

The diatomic molecules of the second period

Eight possible homonuclear diatomic molecules might be formed by the atoms of the second period of the periodic table: Li 2 , Be 2 , B 2 , C 2 , N 2 , O 2 , F 2 , and Ne 2 . However, we can predict that the Be 2 molecule and the Ne 2 molecule would not be stable. We can see this by a consideration of the molecular electron configurations ( [link] ).

We predict valence molecular orbital electron configurations just as we predict electron configurations of atoms. Valence electrons are assigned to valence molecular orbitals with the lowest possible energies. Consistent with Hund’s rule, whenever there are two or more degenerate molecular orbitals, electrons fill each orbital of that type singly before any pairing of electrons takes place.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask