<< Chapter < Page Chapter >> Page >

Now consider the cathode. Three reductions could occur:

( iii ) 2H + ( a q ) + 2 e H 2 ( g ) E cathode ° = 0 V ( iv ) 2H 2 O ( l ) + 2 e H 2 ( g ) + 2 OH ( a q ) E cathode ° = −0.8277 V ( v ) Na + ( a q ) + e Na ( s ) E cathode ° = −2.71 V

Reaction (v) is ruled out because it has such a negative reduction potential. Under standard state conditions, reaction (iii) would be preferred to reaction (iv). However, the pH of a sodium chloride solution is 7, so the concentration of hydrogen ions is only 1 × 10 −7 M . At such low concentrations, reaction (iii) is unlikely and reaction (iv) occurs. The overall reaction is then

overall: 2 H 2 O ( l ) + 2 Cl ( a q ) H 2 ( g ) + Cl 2 ( g ) + 2 OH ( a q ) E cell ° = −2.186 V

As the reaction proceeds, hydroxide ions replace chloride ions in solution. Thus, sodium hydroxide can be obtained by evaporating the water after the electrolysis is complete. Sodium hydroxide is valuable in its own right and is used for things like oven cleaner, drain opener, and in the production of paper, fabrics, and soap.

Electroplating

An important use for electrolytic cells is in electroplating    . Electroplating results in a thin coating of one metal on top of a conducting surface. Reasons for electroplating include making the object more corrosion resistant, strengthening the surface, producing a more attractive finish, or for purifying metal. The metals commonly used in electroplating include cadmium, chromium, copper, gold, nickel, silver, and tin. Common consumer products include silver-plated or gold-plated tableware, chrome-plated automobile parts, and jewelry. We can get an idea of how this works by investigating how silver-plated tableware is produced ( [link] ).

This figure contains a diagram of an electrochemical cell. One beakers is shown that is just over half full. The beaker contains a clear, colorless solution that is labeled “A g N O subscript 3 ( a q ).” A silver strip is mostly submerged in the liquid on the left. This strip is labeled “Silver (anode).” The top of the strip is labeled with a red plus symbol. An arrow points right from the surface of the metal strip into the solution to the label “A g superscript plus” to the right. A spoon is similarly suspended in the solution and is labeled “Spoon (cathode).” It is labeled with a black negative sign on the tip of the spoon’s handle above the surface of the liquid. An arrow extends from the label “A g superscript plus” to the spoon on the right. A wire extends from the top of the spoon and the strip to a rectangle labeled “Voltage source.” An arrow points upward from silver strip which is labeled “e superscript negative.” Similarly, an arrow points down at the right to the surface of the spoon which is also labeled “e superscript negative.” A plus sign is shown just outside the voltage source to the left and a negative is shown to its right.
The spoon, which is made of an inexpensive metal, is connected to the negative terminal of the voltage source and acts as the cathode. The anode is a silver electrode. Both electrodes are immersed in a silver nitrate solution. When a steady current is passed through the solution, the net result is that silver metal is removed from the anode and deposited on the cathode.

In the figure, the anode consists of a silver electrode, shown on the left. The cathode is located on the right and is the spoon, which is made from inexpensive metal. Both electrodes are immersed in a solution of silver nitrate. As the potential is increased, current flows. Silver metal is lost at the anode as it goes into solution.

anode: Ag ( s ) Ag + ( a q ) + e

The mass of the cathode increases as silver ions from the solution are deposited onto the spoon

cathode: Ag + ( a q ) + e Ag ( s )

The net result is the transfer of silver metal from the anode to the cathode. The quality of the object is usually determined by the thickness of the deposited silver and the rate of deposition.

Quantitative aspects of electrolysis

The amount of current that is allowed to flow in an electrolytic cell is related to the number of moles of electrons. The number of moles of electrons can be related to the reactants and products using stoichiometry. Recall that the SI unit for current ( I ) is the ampere (A), which is the equivalent of 1 coulomb per second (1 A = 1 C s ). The total charge ( Q , in coulombs) is given by

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask