<< Chapter < Page Chapter >> Page >
Δ S ° = ν S 298 ° (products) ν S 298 ° (reactants)

Here, ν represents stoichiometric coefficients in the balanced equation representing the process. For example, Δ S ° for the following reaction at room temperature

m A + n B x C + y D,

is computed as the following:

= [ x S 298 ° ( C ) + y S 298 ° ( D ) ] [ m S 298 ° ( A ) + n S 298 ° ( B ) ]

[link] lists some standard entropies at 298.15 K. You can find additional standard entropies in Appendix G .

Standard Entropies (at 298.15 K, 1 atm)
Substance S 298 ° (J mol −1 K −1 )
carbon
C( s , graphite) 5.740
C( s , diamond) 2.38
CO( g ) 197.7
CO 2 ( g ) 213.8
CH 4 ( g ) 186.3
C 2 H 4 ( g ) 219.5
C 2 H 6 ( g ) 229.5
CH 3 OH( l ) 126.8
C 2 H 5 OH( l ) 160.7
hydrogen
H 2 ( g ) 130.57
H( g ) 114.6
H 2 O( g ) 188.71
H 2 O( l ) 69.91
HCI( g ) 186.8
H 2 S( g ) 205.7
oxygen
O 2 ( g ) 205.03

Determination of δ S °

Calculate the standard entropy change for the following process:

H 2 O ( g ) H 2 O ( l )

Solution

The value of the standard entropy change at room temperature, Δ S 298 ° , is the difference between the standard entropy of the product, H 2 O( l ), and the standard entropy of the reactant, H 2 O( g ).

Δ S 298 ° = S 298 ° ( H 2 O ( l ) ) S 298 ° ( H 2 O ( g ) ) = ( 70.0 J mol −1 K −1 ) ( 188.8 J mol −1 K −1 ) = −118.8 J mol −1 K −1

The value for Δ S 298 ° is negative, as expected for this phase transition (condensation), which the previous section discussed.

Check your learning

Calculate the standard entropy change for the following process:

H 2 ( g ) + C 2 H 4 ( g ) C 2 H 6 ( g )

Answer:

−120.6 J mol −1 K −1

Got questions? Get instant answers now!

Determination of δ S °

Calculate the standard entropy change for the combustion of methanol, CH 3 OH:

2 CH 3 OH ( l ) + 3 O 2 ( g ) 2 CO 2 ( g ) + 4 H 2 O ( l )

Solution

The value of the standard entropy change is equal to the difference between the standard entropies of the products and the entropies of the reactants scaled by their stoichiometric coefficients.

Δ S ° = Δ S 298 ° = ν S 298 ° (products) ν S 298 ° (reactants)
[ 2 S 298 ° ( CO 2 ( g ) ) + 4 S 298 ° ( H 2 O ( l ) ) ] [ 2 S 298 ° ( CH 3 OH ( l ) ) + 3 S 298 ° ( O 2 ( g ) ) ] = { [ 2 ( 213.8 ) + 4 × 70.0 ] [ 2 ( 126.8 ) + 3 ( 205.03 ) ] } = -161.1 J/mol·K

Check your learning

Calculate the standard entropy change for the following reaction:

Ca ( OH ) 2 ( s ) CaO ( s ) + H 2 O ( l )

Answer:

24.7 J/mol·K

Got questions? Get instant answers now!

Key concepts and summary

The second law of thermodynamics states that a spontaneous process increases the entropy of the universe, S univ >0. If Δ S univ <0, the process is nonspontaneous, and if Δ S univ = 0, the system is at equilibrium. The third law of thermodynamics establishes the zero for entropy as that of a perfect, pure crystalline solid at 0 K. With only one possible microstate, the entropy is zero. We may compute the standard entropy change for a process by using standard entropy values for the reactants and products involved in the process.

Key equations

  • Δ S ° = Δ S 298 ° = ν S 298 ° (products) ν S 298 ° (reactants)
  • Δ S = q rev T
  • Δ S univ = Δ S sys + Δ S surr
  • Δ S univ = Δ S sys + Δ S surr = Δ S sys + q surr T

Chemistry end of chapter exercises

What is the difference between Δ S , Δ S °, and Δ S 298 ° for a chemical change?

Got questions? Get instant answers now!

Calculate Δ S 298 ° for the following changes.

(a) SnCl 4 ( l ) SnCl 4 ( g )

(b) CS 2 ( g ) CS 2 ( l )

(c) Cu ( s ) Cu ( g )

(d) H 2 O ( l ) H 2 O ( g )

(e) 2 H 2 ( g ) + O 2 ( g ) 2 H 2 O ( l )

(f) 2 HCl ( g ) + Pb ( s ) PbCl 2 ( s ) + H 2 ( g )

(g) Zn ( s ) + CuSO 4 ( s ) Cu ( s ) + ZnSO 4 ( s )

(a) 107 J/K; (b) −86.4 J/K; (c) 133.2 J/K; (d) 118.8 J/K; (e) −326.6 J/K; (f) −171.9 J/K; (g) −7.2 J/K

Got questions? Get instant answers now!

Determine the entropy change for the combustion of liquid ethanol, C 2 H 5 OH, under standard state conditions to give gaseous carbon dioxide and liquid water.

Got questions? Get instant answers now!

Determine the entropy change for the combustion of gaseous propane, C 3 H 8 , under standard state conditions to give gaseous carbon dioxide and water.

100.6 J/K

Got questions? Get instant answers now!

“Thermite” reactions have been used for welding metal parts such as railway rails and in metal refining. One such thermite reaction is Fe 2 O 3 ( s ) + 2 Al ( s ) Al 2 O 3 ( s ) + 2 Fe ( s ) . Is the reaction spontaneous at room temperature under standard conditions? During the reaction, the surroundings absorb 851.8 kJ/mol of heat.

Got questions? Get instant answers now!

Using the relevant S 298 ° values listed in Appendix G , calculate S 298 ° for the following changes:

(a) N 2 ( g ) + 3 H 2 ( g ) 2 NH 3 ( g )

(b) N 2 ( g ) + 5 2 O 2 ( g ) N 2 O 5 ( g )

(a) −198.1 J/K; (b) −348.9 J/K

Got questions? Get instant answers now!

From the following information, determine Δ S 298 ° for the following:

N ( g ) + O ( g ) NO ( g ) Δ S 298 ° = ?

N 2 ( g ) + O 2 ( g ) 2 NO ( g ) Δ S 298 ° = 24.8 J/K

N 2 ( g ) 2 N ( g ) Δ S 298 ° = 115.0 J/K

O 2 ( g ) 2 O ( g ) Δ S 298 ° = 117.0 J/K

Got questions? Get instant answers now!

By calculating Δ S univ at each temperature, determine if the melting of 1 mole of NaCl( s ) is spontaneous at 500 °C and at 700 °C.
S NaCl ( s ) ° = 72.11 J mol·K S NaCl ( l ) ° = 95.06 J mol·K Δ H fusion ° = 27.95 kJ/mol

What assumptions are made about the thermodynamic information (entropy and enthalpy values) used to solve this problem?

As Δ S univ <0 at each of these temperatures, melting is not spontaneous at either of them. The given values for entropy and enthalpy are for NaCl at 298 K. It is assumed that these do not change significantly at the higher temperatures used in the problem.

Got questions? Get instant answers now!

Use the standard entropy data in Appendix G to determine the change in entropy for each of the reactions listed in [link] . All are run under standard state conditions and 25 °C.

Got questions? Get instant answers now!

Use the standard entropy data in Appendix G to determine the change in entropy for each of the reactions listed in [link] . All are run under standard state conditions and 25 °C.

(a) 2.86 J/K; (b) 24.8 J/K; (c) −113.2 J/K; (d) −24.7 J/K; (e) 15.5 J/K; (f) 290.0 J/K

Got questions? Get instant answers now!

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask