<< Chapter < Page Chapter >> Page >

Amount of radiation

Cobalt-60 ( t 1/2 = 5.26 y) is used in cancer therapy since the γ rays it emits can be focused in small areas where the cancer is located. A 5.00-g sample of Co-60 is available for cancer treatment.

(a) What is its activity in Bq?

(b) What is its activity in Ci?

Solution

The activity is given by:

Activity = λ N = ( ln 2 t 1 / 2 ) N = ( ln 2 5.26 y ) × 5.00 g = 0.659 g y of Co−60 that decay

And to convert this to decays per second:

0.659 g y × 1 y 365 d × 1 d 24 h × 1 h 3600 s × 1 mol 59.9 g × 6.02 × 10 23 atoms 1 mol × 1 decay 1 atom = 2.10 × 10 14 decay s

(a) Since 1 Bq = 1 decay s , the activity in Becquerel (Bq) is:

2.10 × 10 14 decay s × ( 1 Bq 1 decay s ) = 2.10 × 10 14 Bq

(b) Since 1 Ci = 3.7 × 10 11 decay s , the activity in curie (Ci) is:

2.10 × 10 14 decay s × ( 1 Ci 3.7 × 10 11 decay s ) = 5.7 × 10 2 Ci

Check your learning

Tritium is a radioactive isotope of hydrogen ( t 1/2 = 12.32 y) that has several uses, including self-powered lighting, in which electrons emitted in tritium radioactive decay cause phosphorus to glow. Its nucleus contains one proton and two neutrons, and the atomic mass of tritium is 3.016 amu. What is the activity of a sample containing 1.00mg of tritium (a) in Bq and (b) in Ci?

Answer:

(a) 3.56 × 10 11 Bq; (b) 0.962 Ci

Got questions? Get instant answers now!

Effects of long-term radiation exposure on the human body

The effects of radiation depend on the type, energy, and location of the radiation source, and the length of exposure. As shown in [link] , the average person is exposed to background radiation, including cosmic rays from the sun and radon from uranium in the ground (see the Chemistry in Everyday Life feature on Radon Exposure); radiation from medical exposure, including CAT scans, radioisotope tests, X-rays, and so on; and small amounts of radiation from other human activities, such as airplane flights (which are bombarded by increased numbers of cosmic rays in the upper atmosphere), radioactivity from consumer products, and a variety of radionuclides that enter our bodies when we breathe (for example, carbon-14) or through the food chain (for example, potassium-40, strontium-90, and iodine-131).

A bar graph titled “Radiation Doses and Regulatory Limits, open parenthesis, in Millirems, close parenthesis” is shown. The y-axis is labeled “Doses in Millirems” and has values from 0 to 5000 with a break between 1000 and 5000 to indicate a different scale to the top of the graph. The y-axis is labeled corresponding to each bar. The first bar, measured to 5000 on the y-axis, is drawn in red and is labeled “Annual Nuclear Worker Doses Limit, open parenthesis, N R C, close parenthesis.” The second bar, measured to 1000 on the y-axis, is drawn in blue and is labeled “Whole Body C T” while the third bar, measured to 620 on the y-axis, is drawn in blue and is labeled “Average U period S period Annual Dose.” The fourth bar, measured to 310 on the y-axis, is drawn in blue and is labeled “U period S period Natural Background Dose” while the fifth bar, measured to 100 on the y-axis and drawn in red reads “Annual Public Dose Limit, open parenthesis, N R C, close parenthesis.” The sixth bar, measured to 40 on the y-axis, is drawn in blue and is labeled “From Your Body” while the seventh bar, measured to 30 on the y-axis and drawn in blue reads “Cosmic rays.” The eighth bar, measured to 4 on the y-axis, is drawn in blue and is labeled “Safe Drinking Water Limit, open parenthesis, E P A, close parenthesis” while the ninth bar, measured to 2.5 on the y-axis and drawn in red reads “Trans Atlantic Flight.” A legend on the graph shows that red means “Dose Limit From N R C dash licensed activity” while blue means “Radiation Doses.”
The total annual radiation exposure for a person in the US is about 620 mrem. The various sources and their relative amounts are shown in this bar graph. (source: U.S. Nuclear Regulatory Commission)

A short-term, sudden dose of a large amount of radiation can cause a wide range of health effects, from changes in blood chemistry to death. Short-term exposure to tens of rems of radiation will likely cause very noticeable symptoms or illness; a dose of about 500 rems is estimated to have a 50% probability of causing the death of the victim within 30 days of exposure. Exposure to radioactive emissions has a cumulative effect on the body during a person’s lifetime, which is another reason why it is important to avoid any unnecessary exposure to radiation. Health effects of short-term exposure to radiation are shown in [link] .

Health Effects of Radiation Source: US Environmental Protection Agency
Exposure (rem) Health Effect Time to Onset (without treatment)
5–10 changes in blood chemistry
50 nausea hours
55 fatigue
70 vomiting
75 hair loss 2–3 weeks
90 diarrhea
100 hemorrhage
400 possible death within 2 months
1000 destruction of intestinal lining
internal bleeding
death 1–2 weeks
2000 damage to central nervous system
loss of consciousness; minutes
death hours to days

It is impossible to avoid some exposure to ionizing radiation. We are constantly exposed to background radiation from a variety of natural sources, including cosmic radiation, rocks, medical procedures, consumer products, and even our own atoms. We can minimize our exposure by blocking or shielding the radiation, moving farther from the source, and limiting the time of exposure.

Key concepts and summary

We are constantly exposed to radiation from a variety of naturally occurring and human-produced sources. This radiation can affect living organisms. Ionizing radiation is the most harmful because it can ionize molecules or break chemical bonds, which damages the molecule and causes malfunctions in cell processes. It can also create reactive hydroxyl radicals that damage biological molecules and disrupt physiological processes. Radiation can cause somatic or genetic damage, and is most harmful to rapidly reproducing cells. Types of radiation differ in their ability to penetrate material and damage tissue, with alpha particles the least penetrating but potentially most damaging and gamma rays the most penetrating.

Various devices, including Geiger counters, scintillators, and dosimeters, are used to detect and measure radiation, and monitor radiation exposure. We use several units to measure radiation: becquerels or curies for rates of radioactive decay; gray or rads for energy absorbed; and rems or sieverts for biological effects of radiation. Exposure to radiation can cause a wide range of health effects, from minor to severe, and including death. We can minimize the effects of radiation by shielding with dense materials such as lead, moving away from the source, and limiting time of exposure.

Key equations

  • rem = RBE × rad
  • Sv = RBE × Gy

Chemistry end of chapter exercises

If a hospital were storing radioisotopes, what is the minimum containment needed to protect against:

(a) cobalt-60 (a strong γ emitter used for irradiation)

(b) molybdenum-99 (a beta emitter used to produce technetium-99 for imaging)

Got questions? Get instant answers now!

Based on what is known about Radon-222’s primary decay method, why is inhalation so dangerous?

Alpha particles can be stopped by very thin shielding but have much stronger ionizing potential than beta particles, X-rays, and γ-rays. When inhaled, there is no protective skin covering the cells of the lungs, making it possible to damage the DNA in those cells and cause cancer.

Got questions? Get instant answers now!

Given specimens uranium-232 ( t 1/2 = 68.9 y) and uranium-233 ( t 1/2 = 159,200 y) of equal mass, which one would have greater activity and why?

Got questions? Get instant answers now!

A scientist is studying a 2.234 g sample of thorium-229 ( t 1/2 = 7340 y) in a laboratory.

(a) What is its activity in Bq?

(b) What is its activity in Ci?

(a) 7.64 × 10 9 Bq; (b) 2.06 × 10 −2 Ci

Got questions? Get instant answers now!

Given specimens neon-24 ( t 1/2 = 3.38 min) and bismuth-211 ( t 1/2 = 2.14 min) of equal mass, which one would have greater activity and why?

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask