<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the preparation, properties, and uses of some representative metal carbonates

The chemistry of carbon is extensive; however, most of this chemistry is not relevant to this chapter. The other aspects of the chemistry of carbon will appear in the chapter covering organic chemistry. In this chapter, we will focus on the carbonate ion and related substances. The metals of groups 1 and 2, as well as zinc, cadmium, mercury, and lead(II), form ionic carbonates —compounds that contain the carbonate anions, CO 3 2− . The metals of group 1, magnesium, calcium, strontium, and barium also form hydrogen carbonates —compounds that contain the hydrogen carbonate anion, HCO 3 , also known as the bicarbonate anion    .

With the exception of magnesium carbonate, it is possible to prepare carbonates of the metals of groups 1 and 2 by the reaction of carbon dioxide with the respective oxide or hydroxide. Examples of such reactions include:

Na 2 O ( s ) + CO 2 ( g ) Na 2 CO 3 ( s )
Ca ( OH ) 2 ( s ) + CO 2 ( g ) CaCO 3 ( s ) + H 2 O ( l )

The carbonates of the alkaline earth metals of group 12 and lead(II) are not soluble. These carbonates precipitate upon mixing a solution of soluble alkali metal carbonate with a solution of soluble salts of these metals. Examples of net ionic equations for the reactions are:

Ca 2+ ( a q ) + CO 3 2− ( a q ) CaCO 3 ( s )
Pb 2+ ( a q ) + CO 3 2− ( a q ) PbCO 3 ( s )

Pearls and the shells of most mollusks are calcium carbonate. Tin(II) or one of the trivalent or tetravalent ions such as Al 3+ or Sn 4+ behave differently in this reaction as carbon dioxide and the corresponding oxide form instead of the carbonate.

Alkali metal hydrogen carbonates such as NaHCO 3 and CsHCO 3 form by saturating a solution of the hydroxides with carbon dioxide. The net ionic reaction involves hydroxide ion and carbon dioxide:

OH ( a q ) + CO 2 ( a q ) HCO 3 ( a q )

It is possible to isolate the solids by evaporation of the water from the solution.

Although they are insoluble in pure water, alkaline earth carbonates dissolve readily in water containing carbon dioxide because hydrogen carbonate salts form. For example, caves and sinkholes form in limestone when CaCO 3 dissolves in water containing dissolved carbon dioxide:

CaCO 3 ( s ) + CO 2 ( a q ) + H 2 O ( l ) Ca 2+ ( a q ) + 2HCO 3 ( a q )

Hydrogen carbonates of the alkaline earth metals remain stable only in solution; evaporation of the solution produces the carbonate. Stalactites and stalagmites, like those shown in [link] , form in caves when drops of water containing dissolved calcium hydrogen carbonate evaporate to leave a deposit of calcium carbonate.

Two photographs are shown and labeled, “a” and “b.” Photo a shows stalactites clinging to the ceiling of a cave while photo b shows a stalagmite growing from the floor of a cave.
(a) Stalactites and (b) stalagmites are cave formations of calcium carbonate. (credit a: modification of work by Arvind Govindaraj; credit b: modification of work by the National Park Service.)

The two carbonates used commercially in the largest quantities are sodium carbonate and calcium carbonate. In the United States, sodium carbonate is extracted from the mineral trona, Na 3 (CO 3 )(HCO 3 )(H 2 O) 2 . Following recrystallization to remove clay and other impurities, heating the recrystallized trona produces Na 2 CO 3 :

2Na 3 ( CO 3 ) ( HCO 3 ) ( H 2 O ) 2 ( s ) 3Na 2 CO 3 ( s ) + 5H 2 O ( l ) + CO 2 ( g )

Carbonates are moderately strong bases. Aqueous solutions are basic because the carbonate ion accepts hydrogen ion from water in this reversible reaction:

CO 3 2− ( a q ) + H 2 O ( l ) HCO 3 ( a q ) + OH ( a q )

Carbonates react with acids to form salts of the metal, gaseous carbon dioxide, and water. The reaction of calcium carbonate, the active ingredient of the antacid Tums, with hydrochloric acid (stomach acid), as shown in [link] , illustrates the reaction:

CaCO 3 ( s ) + 2HCl ( a q ) CaCl 2 ( a q ) + CO 2 ( g ) + H 2 O ( l )
A photograph of a watch glass full of a white solid is shown. A plastic pipette drips a colorless liquid into the solid, causing bubbles.
The reaction of calcium carbonate with hydrochloric acid is shown. (credit: Mark Ott)

Other applications of carbonates include glass making—where carbonate ions serve as a source of oxide ions—and synthesis of oxides.

Hydrogen carbonates are amphoteric because they act as both weak acids and weak bases. Hydrogen carbonate ions act as acids and react with solutions of soluble hydroxides to form a carbonate and water:

KHCO 3 ( a q ) + KOH ( a q ) K 2 CO 3 ( a q ) + H 2 O ( l )

With acids, hydrogen carbonates form a salt, carbon dioxide, and water. Baking soda (bicarbonate of soda or sodium bicarbonate) is sodium hydrogen carbonate. Baking powder contains baking soda and a solid acid such as potassium hydrogen tartrate (cream of tartar), KHC 4 H 4 O 6 . As long as the powder is dry, no reaction occurs; immediately after the addition of water, the acid reacts with the hydrogen carbonate ions to form carbon dioxide:

HC 4 H 4 O 6 ( a q ) + HCO 3 ( a q ) C 4 H 4 O 6 2− ( a q ) + CO 2 ( g ) + H 2 O ( l )

Dough will trap the carbon dioxide, causing it to expand during baking, producing the characteristic texture of baked goods.

Key concepts and summary

The usual method for the preparation of the carbonates of the alkali and alkaline earth metals is by reaction of an oxide or hydroxide with carbon dioxide. Other carbonates form by precipitation. Metal carbonates or hydrogen carbonates such as limestone (CaCO 3 ), the antacid Tums (CaCO 3 ), and baking soda (NaHCO 3 ) are common examples. Carbonates and hydrogen carbonates decompose in the presence of acids and most decompose on heating.

Chemistry end of chapter exercises

Carbon forms the CO 3 2− ion, yet silicon does not form an analogous SiO 3 2− ion. Why?

Got questions? Get instant answers now!

Complete and balance the following chemical equations:

(a) hardening of plaster containing slaked lime
Ca ( OH ) 2 + CO 2

(b) removal of sulfur dioxide from the flue gas of power plants
CaO + SO 2

(c) the reaction of baking powder that produces carbon dioxide gas and causes bread to rise
NaHCO 3 + NaH 2 PO 4

(a) Ca ( OH ) 2 ( a q ) + CO 2 ( g ) CaCO 3 ( s ) + H 2 O ( l ) ; (b) CaO ( s ) + SO 2 ( g ) CaSO 3 ( s ) ;
(c) 2NaHCO 3 ( s ) + NaH 2 PO 4 ( a q ) Na 3 PO 4 ( a q ) + 2CO 2 ( g ) + 2H 2 O ( l )

Got questions? Get instant answers now!

Heating a sample of Na 2 CO 3 x H 2 O weighing 4.640 g until the removal of the water of hydration leaves 1.720 g of anhydrous Na 2 CO 3 . What is the formula of the hydrated compound?

Got questions? Get instant answers now!

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask