<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Relate cell potentials to free energy changes
  • Use the Nernst equation to determine cell potentials at nonstandard conditions
  • Perform calculations that involve converting between cell potentials, free energy changes, and equilibrium constants

We will now extend electrochemistry by determining the relationship between E cell ° and the thermodynamics quantities such as Δ G ° (Gibbs free energy) and K (the equilibrium constant). In galvanic cells, chemical energy is converted into electrical energy, which can do work. The electrical work is the product of the charge transferred multiplied by the potential difference (voltage):

electrical work = volts × ( charge in coulombs ) = J

The charge on 1 mole of electrons is given by Faraday’s constant ( F )

F = 6.022 × 10 23 e mol × 1.602 × 10 19 C e = 9.648 × 10 4 C mol = 9.684 × 10 4 J V·mol
total charge = ( number of moles of e ) × F = n F

In this equation, n is the number of moles of electrons for the balanced oxidation-reduction reaction. The measured cell potential is the maximum potential the cell can produce and is related to the electrical work ( w ele ) by

E cell = w ele n F or w ele = n F E cell

The negative sign for the work indicates that the electrical work is done by the system (the galvanic cell) on the surroundings. In an earlier chapter, the free energy was defined as the energy that was available to do work. In particular, the change in free energy was defined in terms of the maximum work ( w max ), which, for electrochemical systems, is w ele .

Δ G = w max = w ele
Δ G = n F E cell

We can verify the signs are correct when we realize that n and F are positive constants and that galvanic cells, which have positive cell potentials, involve spontaneous reactions. Thus, spontaneous reactions, which have Δ G <0, must have E cell >0. If all the reactants and products are in their standard states, this becomes

Δ G ° = n F E cell °

This provides a way to relate standard cell potentials to equilibrium constants, since

Δ G ° = R T ln K
n F E cell ° = R T ln K or E cell ° = R T n F ln K

Most of the time, the electrochemical reactions are run at standard temperature (298.15 K). Collecting terms at this temperature yields

E cell ° = R T n F ln K = ( 8.314 J K·mol ) ( 298.15 K ) n × 96,485 C/V·mol ln K = 0.0257 V n ln K

where n is the number of moles of electrons. For historical reasons, the logarithm in equations involving cell potentials is often expressed using base 10 logarithms (log), which changes the constant by a factor of 2.303:

E cell ° = 0.0 592 V n log K

Thus, if Δ G °, K , or E cell ° is known or can be calculated, the other two quantities can be readily determined. The relationships are shown graphically in [link] .

A diagram is shown that involves three double headed arrows positioned in the shape of an equilateral triangle. The vertices are labeled in red. The top vertex is labeled “K.“ The vertex at the lower left is labeled “delta G superscript degree symbol.” The vertex at the lower right is labeled “E superscript degree symbol subscript cell.” The right side of the triangle is labeled “E superscript degree symbol subscript cell equals ( R T divided by n  F ) l n K.” The lower side of the triangle is labeled “delta G superscript degree symbol equals negative n F E superscript degree symbol subscript cell.” The left side of the triangle is labeled “delta G superscript degree symbol equals negative R T l n K.”
The relationships between Δ G °, K , and E cell ° . Given any one of the three quantities, the other two can be calculated, so any of the quantities could be used to determine whether a process was spontaneous.

Given any one of the quantities, the other two can be calculated.

Equilibrium constants, standard cell potentials, and standard free energy changes

What is the standard free energy change and equilibrium constant for the following reaction at 25 °C?

2 Ag + ( a q ) + Fe ( s ) 2Ag ( s ) + Fe 2+ ( a q )

Solution

The reaction involves an oxidation-reduction reaction, so the standard cell potential can be calculated using the data in Appendix L .

anode (oxidation): Fe ( s ) Fe 2+ ( a q ) + 2e E Fe 2+ /Fe ° = −0.447 V cathode (reduction): 2 × ( Ag + ( a q ) + e Ag ( s ) ) E Ag + /Ag ° = 0.7996 V E cell ° = E cathode ° E anode ° = E Ag + /Ag ° E Fe 2+ /Fe ° = +1.247 V

Remember that the cell potential for the cathode is not multiplied by two when determining the standard cell potential. With n = 2, the equilibrium constant is then

E cell ° = 0.0592 V n log K
K = 10 n × E cell ° / 0.0592 V
K = 10 2 × 1.247 V/0.0592 V
K = 10 42.128
K = 1.3 × 10 42

The two equilibrium constants differ slightly due to rounding in the constants 0.0257 V and 0.0592 V. The standard free energy is then

Δ G ° = n F E cell °
Δ G ° = −2 × 96,485 J V·mol × 1.247 V = −240.6 kJ mol

Check your answer: A positive standard cell potential means a spontaneous reaction, so the standard free energy change should be negative, and an equilibrium constant should be>1.

Check your learning

What is the standard free energy change and the equilibrium constant for the following reaction at room temperature? Is the reaction spontaneous?

Sn ( s ) + 2 Cu 2+ ( a q ) Sn 2+ ( a q ) + 2 Cu + ( a q )

Answer:

Spontaneous; n = 2; E cell ° = +0.291 V ; Δ G ° = −56.2 kJ mol ; K = 6.8 × 10 9 .

Got questions? Get instant answers now!

Questions & Answers

how did you get 1640
Noor Reply
If auger is pair are the roots of equation x2+5x-3=0
Peter Reply
Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.
MATTHEW Reply
420
Sharon
from theory: distance [miles] = speed [mph] × time [hours] info #1 speed_Dennis × 1.5 = speed_Wayne × 2 => speed_Wayne = 0.75 × speed_Dennis (i) info #2 speed_Dennis = speed_Wayne + 7 [mph] (ii) use (i) in (ii) => [...] speed_Dennis = 28 mph speed_Wayne = 21 mph
George
Let W be Wayne's speed in miles per hour and D be Dennis's speed in miles per hour. We know that W + 7 = D and W * 2 = D * 1.5. Substituting the first equation into the second: W * 2 = (W + 7) * 1.5 W * 2 = W * 1.5 + 7 * 1.5 0.5 * W = 7 * 1.5 W = 7 * 3 or 21 W is 21 D = W + 7 D = 21 + 7 D = 28
Salma
Devon is 32 32​​ years older than his son, Milan. The sum of both their ages is 54 54​. Using the variables d d​ and m m​ to represent the ages of Devon and Milan, respectively, write a system of equations to describe this situation. Enter the equations below, separated by a comma.
Aaron Reply
find product (-6m+6) ( 3m²+4m-3)
SIMRAN Reply
-42m²+60m-18
Salma
what is the solution
bill
how did you arrive at this answer?
bill
-24m+3+3mÁ^2
Susan
i really want to learn
Amira
I only got 42 the rest i don't know how to solve it. Please i need help from anyone to help me improve my solving mathematics please
Amira
Hw did u arrive to this answer.
Aphelele
hi
Bajemah
-6m(3mA²+4m-3)+6(3mA²+4m-3) =-18m²A²-24m²+18m+18mA²+24m-18 Rearrange like items -18m²A²-24m²+42m+18A²-18
Salma
complete the table of valuesfor each given equatio then graph. 1.x+2y=3
Jovelyn Reply
x=3-2y
Salma
y=x+3/2
Salma
Hi
Enock
given that (7x-5):(2+4x)=8:7find the value of x
Nandala
3x-12y=18
Kelvin
please why isn't that the 0is in ten thousand place
Grace Reply
please why is it that the 0is in the place of ten thousand
Grace
Send the example to me here and let me see
Stephen
A meditation garden is in the shape of a right triangle, with one leg 7 feet. The length of the hypotenuse is one more than the length of one of the other legs. Find the lengths of the hypotenuse and the other leg
Marry Reply
how far
Abubakar
cool u
Enock
state in which quadrant or on which axis each of the following angles given measure. in standard position would lie 89°
Abegail Reply
hello
BenJay
hi
Method
I am eliacin, I need your help in maths
Rood
how can I help
Sir
hmm can we speak here?
Amoon
however, may I ask you some questions about Algarba?
Amoon
hi
Enock
what the last part of the problem mean?
Roger
The Jones family took a 15 mile canoe ride down the Indian River in three hours. After lunch, the return trip back up the river took five hours. Find the rate, in mph, of the canoe in still water and the rate of the current.
cameron Reply
Shakir works at a computer store. His weekly pay will be either a fixed amount, $925, or $500 plus 12% of his total sales. How much should his total sales be for his variable pay option to exceed the fixed amount of $925.
mahnoor Reply
I'm guessing, but it's somewhere around $4335.00 I think
Lewis
12% of sales will need to exceed 925 - 500, or 425 to exceed fixed amount option. What amount of sales does that equal? 425 ÷ (12÷100) = 3541.67. So the answer is sales greater than 3541.67. Check: Sales = 3542 Commission 12%=425.04 Pay = 500 + 425.04 = 925.04. 925.04 > 925.00
Munster
difference between rational and irrational numbers
Arundhati Reply
When traveling to Great Britain, Bethany exchanged $602 US dollars into £515 British pounds. How many pounds did she receive for each US dollar?
Jakoiya Reply
how to reduced echelon form
Solomon Reply
Jazmine trained for 3 hours on Saturday. She ran 8 miles and then biked 24 miles. Her biking speed is 4 mph faster than her running speed. What is her running speed?
Zack Reply
d=r×t the equation would be 8/r+24/r+4=3 worked out
Sheirtina
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask