<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Assess the relative strengths of acids and bases according to their ionization constants
  • Rationalize trends in acid–base strength in relation to molecular structure
  • Carry out equilibrium calculations for weak acid–base systems

We can rank the strengths of acids by the extent to which they ionize in aqueous solution. The reaction of an acid with water is given by the general expression:

HA ( a q ) + H 2 O ( l ) H 3 O + ( a q ) + A ( a q )

Water is the base that reacts with the acid HA, A is the conjugate base of the acid HA, and the hydronium ion is the conjugate acid of water. A strong acid yields 100% (or very nearly so) of H 3 O + and A when the acid ionizes in water; [link] lists several strong acids. A weak acid gives small amounts of H 3 O + and A .

This table has seven rows and two columns. The first row is a header row, and it labels each column, “6 Strong Acids,” and, “6 Strong Bases.” Under the “6 Strong Acids” column are the following: H C l O subscript 4 perchloric acid; H C l hydrochloric acid; H B r hydrobromic acid; H I hydroiodic acid; H N O subscript 3 nitric acid; H subscript 2 S O subscript 4 sulfuric acid. Under the “6 Strong Bases” column are the following: L i O H lithium hydroxide; N a O H sodium hydroxide; K O H potassium hydroxide; C a ( O H ) subscript 2 calcium hydroxide; S r ( O H ) subscript 2 strontium hydroxide; B a ( O H ) subscript 2 barium hydroxide.
Some of the common strong acids and bases are listed here.

The relative strengths of acids may be determined by measuring their equilibrium constants in aqueous solutions. In solutions of the same concentration, stronger acids ionize to a greater extent, and so yield higher concentrations of hydronium ions than do weaker acids. The equilibrium constant for an acid is called the acid-ionization constant, K a . For the reaction of an acid HA:

HA ( a q ) + H 2 O ( l ) H 3 O + ( a q ) + A ( a q ) ,

we write the equation for the ionization constant as:

K a = [ H 3 O + ] [ A ] [HA]

where the concentrations are those at equilibrium. Although water is a reactant in the reaction, it is the solvent as well, so we do not include [H 2 O] in the equation. The larger the K a of an acid, the larger the concentration of H 3 O + and A relative to the concentration of the nonionized acid, HA. Thus a stronger acid has a larger ionization constant than does a weaker acid. The ionization constants increase as the strengths of the acids increase. (A table of ionization constants of weak acids appears in Appendix H , with a partial listing in [link] .)

The following data on acid-ionization constants indicate the order of acid strength CH 3 CO 2 H<HNO 2 < HSO 4 :

CH 3 CO 2 H ( a q ) + H 2 O ( l ) H 3 O + ( a q ) + CH 3 CO 2 ( a q ) K a = 1.8 × 10 −5
HNO 2 ( a q ) + H 2 O ( l ) H 3 O + ( a q ) + NO 2 ( a q ) K a = 4.6 × 10 −4
HSO 4 ( a q ) + H 2 O ( a q ) H 3 O + ( a q ) + SO 4 2− ( a q ) K a = 1.2 × 10 −2

Another measure of the strength of an acid is its percent ionization. The percent ionization    of a weak acid is the ratio of the concentration of the ionized acid to the initial acid concentration, times 100:

% ionization = [ H 3 O + ] eq [ HA] 0 × 100

Because the ratio includes the initial concentration, the percent ionization for a solution of a given weak acid varies depending on the original concentration of the acid, and actually decreases with increasing acid concentration.

Calculation of percent ionization from ph

Calculate the percent ionization of a 0.125- M solution of nitrous acid (a weak acid), with a pH of 2.09.

Solution

The percent ionization for an acid is:

[ H 3 O + ] eq [ HNO 2 ] 0 × 100

The chemical equation for the dissociation of the nitrous acid is: HNO 2 ( a q ) + H 2 O ( l ) NO 2 ( a q ) + H 3 O + ( a q ) . Since 10 −pH = [ H 3 O + ] , we find that 10 −2.09 = 8.1 × 10 −3 M , so that percent ionization is:

8.1 × 10 −3 0.125 × 100 = 6.5 %

Remember, the logarithm 2.09 indicates a hydronium ion concentration with only two significant figures.

Check your learning

Calculate the percent ionization of a 0.10- M solution of acetic acid with a pH of 2.89.

Answer:

1.3% ionized

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask