<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Derive reaction quotients from chemical equations representing homogeneous and heterogeneous reactions
  • Calculate values of reaction quotients and equilibrium constants, using concentrations and pressures
  • Relate the magnitude of an equilibrium constant to properties of the chemical system

Now that we have a symbol (⇌) to designate reversible reactions, we will need a way to express mathematically how the amounts of reactants and products affect the equilibrium of the system. A general equation for a reversible reaction may be written as follows:

m A + n B + x C + y D

We can write the reaction quotient ( Q )    for this equation. When evaluated using concentrations, it is called Q c . We use brackets to indicate molar concentrations of reactants and products.

Q c = [ C ] x [ D ] y [ A ] m [ B ] n

The reaction quotient is equal to the molar concentrations of the products of the chemical equation (multiplied together) over the reactants (also multiplied together), with each concentration raised to the power of the coefficient of that substance in the balanced chemical equation. For example, the reaction quotient for the reversible reaction 2 NO 2 ( g ) N 2 O 4 ( g ) is given by this expression:

Q c = [ N 2 O 4 ] [ NO 2 ] 2

Writing reaction quotient expressions

Write the expression for the reaction quotient for each of the following reactions:

(a) 3 O 2 ( g ) 2 O 3 ( g )

(b) N 2 ( g ) + 3 H 2 ( g ) 2 NH 3 ( g )

(c) 4 NH 3 ( g ) + 7 O 2 ( g ) 4 NO 2 ( g ) + 6 H 2 O ( g )

Solution

(a) Q c = [ O 3 ] 2 [ O 2 ] 3

(b) Q c = [ NH 3 ] 2 [ N 2 ] [ H 2 ] 3

(c) Q c = [ NO 2 ] 4 [ H 2 O ] 6 [ NH 3 ] 4 [ O 2 ] 7

Check your learning

Write the expression for the reaction quotient for each of the following reactions:

(a) 2 SO 2 ( g ) + O 2 ( g ) 2 SO 3 ( g )

(b) C 4 H 8 ( g ) 2 C 2 H 4 ( g )

(c) 2 C 4 H 10 ( g ) + 13 O 2 ( g ) 8 CO 2 ( g ) + 10 H 2 O ( g )

Answer:

(a) Q c = [ SO 3 ] 2 [ SO 2 ] 2 [ O 2 ] ; (b) Q c = [ C 2 H 4 ] 2 [ C 4 H 8 ] ; (c) Q c = [ CO 2 ] 8 [ H 2 O ] 10 [ C 4 H 10 ] 2 [ O 2 ] 13

Got questions? Get instant answers now!

The numeric value of Q c for a given reaction varies; it depends on the concentrations of products and reactants present at the time when Q c is determined. When pure reactants are mixed, Q c is initially zero because there are no products present at that point. As the reaction proceeds, the value of Q c increases as the concentrations of the products increase and the concentrations of the reactants simultaneously decrease ( [link] ). When the reaction reaches equilibrium, the value of the reaction quotient no longer changes because the concentrations no longer change.

Three graphs are shown and labeled, “a,” “b,” and “c.” All three graphs have a vertical dotted line running through the middle labeled, “Equilibrium is reached.” The y-axis on graph a is labeled, “Concentration,” and the x-axis is labeled, “Time.” Three curves are plotted on graph a. The first is labeled, “[ S O subscript 2 ];” this line starts high on the y-axis, ends midway down the y-axis, has a steep initial slope and a more gradual slope as it approaches the far right on the x-axis. The second curve on this graph is labeled, “[ O subscript 2 ];” this line mimics the first except that it starts and ends about fifty percent lower on the y-axis. The third curve is the inverse of the first in shape and is labeled, “[ S O subscript 3 ].” The y-axis on graph b is labeled, “Concentration,” and the x-axis is labeled, “Time.” Three curves are plotted on graph b. The first is labeled, “[ S O subscript 2 ];” this line starts low on the y-axis, ends midway up the y-axis, has a steep initial slope and a more gradual slope as it approaches the far right on the x-axis. The second curve on this graph is labeled, “[ O subscript 2 ];” this line mimics the first except that it ends about fifty percent lower on the y-axis. The third curve is the inverse of the first in shape and is labeled, “[ S O subscript 3 ].” The y-axis on graph c is labeled, “Reaction Quotient,” and the x-axis is labeled, “Time.” A single curve is plotted on graph c. This curve begins at the bottom of the y-axis and rises steeply up near the top of the y-axis, then levels off into a horizontal line. The top point of this line is labeled, “k.”
(a) The change in the concentrations of reactants and products is depicted as the 2 SO 2 ( g ) + O 2 ( g ) 2 SO 3 ( g ) reaction approaches equilibrium. (b) The change in concentrations of reactants and products is depicted as the reaction 2 SO 3 ( g ) 2 SO 2 ( g ) + O 2 ( g ) approaches equilibrium. (c) The graph shows the change in the value of the reaction quotient as the reaction approaches equilibrium.

When a mixture of reactants and products of a reaction reaches equilibrium at a given temperature, its reaction quotient always has the same value. This value is called the equilibrium constant ( K )    of the reaction at that temperature. As for the reaction quotient, when evaluated in terms of concentrations, it is noted as K c .

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask